Einstein Metrics, Harmonic Forms, & Symplectic Four ...parton/NTDG2014/lucidi/lebrun.pdfFour...

Post on 03-Aug-2020

3 views 0 download

Transcript of Einstein Metrics, Harmonic Forms, & Symplectic Four ...parton/NTDG2014/lucidi/lebrun.pdfFour...

Einstein Metrics,

Harmonic Forms, &

Symplectic Four-Manifolds

Claude LeBrunStony Brook University

Sardegna, 2014/9/20

1

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

2

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

3

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

“. . . the greatest blunder of my life!”

— A. Einstein, to G. Gamow

4

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

5

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

As punishment . . .

6

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

7

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

Has same sign as the scalar curvature

s = rjj = Rijij.

8

Definition. A Riemannian metric h is said tobe Einstein if it has constant Ricci curvature —i.e.

r = λh

for some constant λ ∈ R.

λ called Einstein constant.

Has same sign as the scalar curvature

s = rjj = Rijij.

volg(Bε(p))

cnεn= 1− s ε2

6(n+2)+ O(ε4)

r......................................................................................... ε

.....................................................................................................................................................................................................................................................................................................................................................................................................................................

............................

.......................

..........................................................................................................................................................

....... .............

.......................................................................

9

Geometrization Problem:

10

Geometrization Problem:

Given a smooth compact manifold Mn, can one

11

Geometrization Problem:

Given a smooth compact manifold Mn, can onedecompose M in Einstein and collapsed pieces?

12

Geometrization Problem:

Given a smooth compact manifold Mn, can onedecompose M in Einstein and collapsed pieces?

When n = 3, answer is “Yes.”

13

Geometrization Problem:

Given a smooth compact manifold Mn, can onedecompose M in Einstein and collapsed pieces?

When n = 3, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

14

Geometrization Problem:

Given a smooth compact manifold Mn, can onedecompose M in Einstein and collapsed pieces?

When n = 3, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?

15

Recognition Problem:

16

Recognition Problem:

Suppose Mn admits Einstein metric h.

17

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

18

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

19

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

20

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S3, R3, H3. . .

21

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S3, R3, H3. . .

But when n ≥ 5, situation seems hopeless.

22

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S3, R3, H3. . .

But when n ≥ 5, situation seems hopeless.

{Einstein metrics on Sn}/∼ is highly disconnected.

23

Recognition Problem:

Suppose Mn admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S3, R3, H3. . .

But when n ≥ 5, situation seems hopeless.

{Einstein metrics on Sn}/∼ is highly disconnected.

When n ≥ 4, situation is more encouraging. . .

24

Moduli Spaces of Einstein metrics

25

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

26

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

27

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

M = T 4, K3, H4/Γ, CH2/Γ.

28

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

M = T 4, K3, H4/Γ, CH2/Γ.

Berger, Hitchin, Besson-Courtois-Gallot, L.

29

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

M = T 4, K3, H4/Γ, CH2/Γ.

Berger, Hitchin, Besson-Courtois-Gallot, L.

30

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

M = T 4, K3, H4/Γ, CH2/Γ.

Berger, Hitchin, Besson-Courtois-Gallot, L.

31

Moduli Spaces of Einstein metrics

E (M) = {Einstein h}/(Diffeos× R+)

Known to be connected for certain 4-manifolds:

M = T 4, K3, H4/Γ, CH2/Γ.

Berger, Hitchin, Besson-Courtois-Gallot, L.

32

Four Dimensions is Exceptional

33

Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

34

Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructionsto the existence of Einstein metrics on 4-manifolds.

35

Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructionsto the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifoldsby decomposition into Einstein and collapsed pieces.

36

Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructionsto the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifoldsby decomposition into Einstein and collapsed pieces.

One key question:

37

Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructionsto the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifoldsby decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension fourto make this a genuine geometrization?

38

Symplectic 4-manifolds:

39

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

40

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

41

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

42

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

43

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M4, ω) is asymplectic 4-manifold, when does M4 admit anEinstein metric h (unrelated to ω)? What if wealso require λ ≥ 0?

44

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M4, ω) is asymplectic 4-manifold, when does M4 admit anEinstein metric h (unrelated to ω)? What if wealso require λ ≥ 0?

45

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M4, ω) is asymplectic 4-manifold, when does M4 admit anEinstein metric h (unrelated to ω)? What if wealso require λ ≥ 0?

46

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M4, ω) is asymplectic 4-manifold, when does M4 admit anEinstein metric h (unrelated to ω)? What if wealso require λ ≥ 0?

47

Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kahler geometry is a rich source of examples.

If M admits a Kahler metric, it of course admits asymplectic form ω.

On such manifolds, Seiberg-Witten theory mimicsKahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M4, ω) is asymplectic 4-manifold, when does M4 admit anEinstein metric h (unrelated to ω)? What if wealso require λ ≥ 0?

48

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

49

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

50

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

51

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

52

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

53

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

54

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

55

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

56

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2

K3

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

57

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

58

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

59

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

60

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

61

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

62

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

63

Conventions:

CP2 = reverse oriented CP2.

64

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

...........................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

................... ...........................

................................................................................................................................................................................................................................................................................................................................................................................

.........................

..................................................

...

................................................................................. .....................................................

......................................................................................................................................

65

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

66

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

67

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

68

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

...........................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................

................... ...........................

................................................................................................................................................................................................................................................................................................................................................................................

.........................

..................................................

...

................................................................................. .....................................................

......................................................................................................................................

69

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

................................................................. ..................................

................................

................................

................................

................................

70

Conventions:

CP2 = reverse oriented CP2.

Connected sum #:

.....................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................

................

................................................................................. .....................................................

......................................................................................................................................

..................................

..................................

................................

................................

71

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

72

Theorem (L ’09). Suppose that M is a smoothcompact oriented 4-manifold which admits asymplectic structure ω. Then M also admits anEinstein metric h with λ ≥ 0 if and only if

Mdiff≈

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Del Pezzo surfaces,K3 surface, Enriques surface,Abelian surface, Hyper-elliptic surfaces.

73

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

74

Definitive list . . .

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

75

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

76

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

77

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

78

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

79

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

80

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M)= {Einstein metrics}/Diffeomorphisms

81

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) = {Einstein h}/(Diffeos×R+)

82

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) completely understood.

83

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

84

But we understand some cases better than others!

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

85

Above the line:

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

86

Above the line:

Know an Einstein metric on each manifold.

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

87

Above the line:

Moduli space E (M) 6= ∅. Is it connected?

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

88

Above the line:

Moduli space E (M) 6= ∅. But is it connected?

M ===

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,K3,K3/Z2,

T 4,

T 4/Z2, T4/Z3, T

4/Z4, T4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space E (M) connected!

89

Objective of this lecture:

90

Objective of this lecture:

Describe modest recent progress on this issue.

91

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

92

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

U ⊂ {Riemannian metrics on M}

93

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

U ⊂ {Riemannian metrics on M}

such that

94

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

U ⊂ {Riemannian metrics on M}

such that

• Every known Einstein metric belongs to U ;

95

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

U ⊂ {Riemannian metrics on M}

such that

• Every known Einstein metric belongs to U ;

• These form a connected family, mod diffeos; and

96

Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

U ⊂ {Riemannian metrics on M}

such that

• Every known Einstein metric belongs to U ;

• These form a connected family, mod diffeos; and

•No other Einstein metrics belong to U !

97

Formulation will depend on. . .

98

Special character of dimension 4:

99

Special character of dimension 4:

The Lie group SO(4) is not simple:

100

Special character of dimension 4:

The Lie group SO(4) is not simple:

so(4) ∼= so(3)⊕ so(3).

101

Special character of dimension 4:

The Lie group SO(4) is not simple:

so(4) ∼= so(3)⊕ so(3).

On oriented (M4, g), =⇒

102

Special character of dimension 4:

The Lie group SO(4) is not simple:

so(4) ∼= so(3)⊕ so(3).

On oriented (M4, g), =⇒Λ2 = Λ+ ⊕ Λ−

103

Special character of dimension 4:

The Lie group SO(4) is not simple:

so(4) ∼= so(3)⊕ so(3).

On oriented (M4, g), =⇒Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

104

Special character of dimension 4:

The Lie group SO(4) is not simple:

so(4) ∼= so(3)⊕ so(3).

On oriented (M4, g), =⇒Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

?2 = 1.

Λ+ self-dual 2-forms.Λ− anti-self-dual 2-forms.

105

Riemann curvature of g

R : Λ2→ Λ2

106

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

107

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

108

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

where

s = scalar curvature

r = trace-free Ricci curvature

W+ = self-dual Weyl curvature (conformally invariant)

W− = anti-self-dual Weyl curvature

109

Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s12 r

Λ− r W− + s12

where

s = scalar curvature

r = trace-free Ricci curvature

W+ = self-dual Weyl curvature (conformally invariant)

W− = anti-self-dual Weyl curvature ′′

110

Smooth compactM4 has invariants b±(M), definedin terms of intersection pairing

111

Smooth compactM4 has invariants b±(M), definedin terms of intersection pairing

H2(M,R)×H2(M,R) −→ R

( [ϕ] , [ψ] ) 7−→∫Mϕ ∧ ψ

112

Smooth compactM4 has invariants b±(M), definedin terms of intersection pairing

H2(M,R)×H2(M,R) −→ R

( [ϕ] , [ψ] ) 7−→∫Mϕ ∧ ψ

Diagonalize:

113

Smooth compactM4 has invariants b±(M), definedin terms of intersection pairing

H2(M,R)×H2(M,R) −→ R

( [ϕ] , [ψ] ) 7−→∫Mϕ ∧ ψ

Diagonalize:

+1. . .

+1︸ ︷︷ ︸b+(M)

b−(M)

−1. . .

−1

.

114

Smooth compactM4 has invariants b±(M), definedin terms of intersection pairing

H2(M,R)×H2(M,R) −→ R

( [ϕ] , [ψ] ) 7−→∫Mϕ ∧ ψ

Diagonalize:

+1. . .

+1︸ ︷︷ ︸b+(M)

b−(M)

−1. . .

−1

.

115

Hodge theory:

H2(M,R) = {ϕ ∈ Γ(Λ2) | dϕ = 0, d ? ϕ = 0}.

116

Hodge theory:

H2(M,R) = {ϕ ∈ Γ(Λ2) | dϕ = 0, d ? ϕ = 0}.Since ? is involution of RHS, =⇒

H2(M,R) = H+g ⊕H−g ,

117

Hodge theory:

H2(M,R) = {ϕ ∈ Γ(Λ2) | dϕ = 0, d ? ϕ = 0}.Since ? is involution of RHS, =⇒

H2(M,R) = H+g ⊕H−g ,

where

H±g = {ϕ ∈ Γ(Λ±) | dϕ = 0}self-dual & anti-self-dual harmonic forms.

118

Hodge theory:

H2(M,R) = {ϕ ∈ Γ(Λ2) | dϕ = 0, d ? ϕ = 0}.Since ? is involution of RHS, =⇒

H2(M,R) = H+g ⊕H−g ,

where

H±g = {ϕ ∈ Γ(Λ±) | dϕ = 0}self-dual & anti-self-dual harmonic forms. Then

b±(M) = dimH±g .

119

H+g

H−g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..............................................................................................................................................

..............................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

........................................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................................................................................

{a | a · a = 0} ⊂H2(M,R)

120

H+g

H−g

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..............................................................................................................................................

..............................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.................................................................. ...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................

..........................................................................................................................................................................................................

{a | a · a = 0} ⊂ H2(M,R)

121

H+g′

H−g′

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

.................................

.....................................................................................................

....................................................................................................................................................................................................

....................................................................................................................................................................................................

............................

............................

............................

......

............................

............................

............................

............................

............................

......

...........................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................

.......................................................................................................................................

{a | a · a = 0} ⊂ H2(M,R)

122

H+g

H−g

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..............................................................................................................................................

..............................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.................................................................. ...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................

..........................................................................................................................................................................................................

b±(M) = dimH±g .

123

H+g′

H−g′

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

..................................

..................................

.................................

.....................................................................................................

....................................................................................................................................................................................................

....................................................................................................................................................................................................

............................

............................

............................

......

............................

............................

............................

............................

............................

......

...........................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................

.......................................................................................................................................

b±(M) = dimH±g .

124

H+g

H−g

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..............................................................................................................................................

..............................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.................................................................. ...................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................

..........................................................................................................................................................................................................

b±(M) = dimH±g .

125

H+g

H−g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

..............................................................................................................................................

..............................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

........................................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................................................................................

b±(M) = dimH±g .

126

More Technical Question. When does a com-pact complex surface (M4, J) admit an Einsteinmetric h which is Hermitian, in the sense that

127

More Technical Question. When does a com-pact complex surface (M4, J) admit an Einsteinmetric h which is Hermitian, in the sense that

h(·, ·) = h(J ·, J ·)?

128

More Technical Question. When does a com-pact complex surface (M4, J) admit an Einsteinmetric h which is Hermitian, in the sense that

h(·, ·) = h(J ·, J ·)?

Kahler if the 2-form

ω = h(J ·, ·)is closed:

dω = 0.

But we do not assume this!

129

More Technical Question. When does a com-pact complex surface (M4, J) admit an Einsteinmetric h which is Hermitian, in the sense that

h(·, ·) = h(J ·, J ·)?

130

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

131

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

132

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

133

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Aubin, Yau, Siu, Tian . . . Kahler case.

134

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Aubin, Yau, Siu, Tian . . . Kahler case.

Chen-L-Weber (2008), L (2012): non-Kahler case.

135

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Aubin, Yau, Siu, Tian . . . Kahler case.

Chen-L-Weber (2008), L (2012): non-Kahler case.

Only two metrics arise in non-Kahler case!

136

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Key Point. Metrics are actually conformally Kahler.

137

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Key Point. Metrics are actually conformally Kahler.

138

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Key Point. Metrics are actually conformally Kahler.

h = s−2g

139

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Key Point. Metrics are actually conformally Kahler.

Strictly 4-dimensional phenomenon!

140

Theorem. A compact complex surface (M4, J)admits an Einstein metric h which is Hermitianwith respect to J ⇐⇒ c1(M4, J) “has a sign.”

More precisely, ∃ such h with Einstein constantλ ⇐⇒ there is a Kahler form ω such that

c1(M4, J) = λ[ω].

Moreover, this metric is unique, up to isometry,if λ 6= 0.

Key Point. Metrics are actually conformally Kahler.

Strictly 4-dimensional phenomenon!

“Riemannian Goldberg-Sachs Theorem.”

141

So, which complex surfaces admit

142

So, which complex surfaces admit

Einstein Hermitian metrics with λ > 0?

143

Del Pezzo surfaces:

144

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].

145

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

146

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

147

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

148

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

149

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

150

Blowing up:

151

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

152

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

153

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

154

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

in which added CP1 has normal bundle O(−1).

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

155

156

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

in which added CP1 has normal bundle O(−1).

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

157

158

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

in which added CP1 has normal bundle O(−1).

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

159

160

Blowing up:

If N is a complex surface, may replace p ∈ Nwith CP1 to obtain blow-up

M ≈ N#CP2

in which added CP1 has normal bundle O(−1).

rN

M............................................................................................................... ..........

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................

.....................................................

......................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................

.............................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

........

.......

.........................................

161

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

162

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

....................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................

.......................................................................................................................

..................................................................................................................................................................................................................................................

.....................................................................................................

.....................................................................................................

No 3 on a line, no 5 on conic, no 8 on nodal cubic.

163

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

••

• .........................................

........................

...................................

................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

.......................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

164

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................

....................

......................

.........................

................................

................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................

......................................................................................................................................................................................................................................................................................

CP2

••

••

••

• ....................................................................................

...................................................................................................................................................................................................................................................................................

.....................

...................

........................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

165

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

166

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

For each topological type:

167

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

For each topological type:

Moduli space of such (M4, J) is connected.

168

Del Pezzo surfaces:

(M4, J) for which c1 is a Kahler class [ω].Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,in general position, or CP1 × CP1.

For each topological type:

Moduli space of such (M4, J) is connected.

Just a point if b2(M) ≤ 5.

169

Every del Pezzo surface has b+ = 1. ⇐⇒

170

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

171

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

172

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

173

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

174

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

175

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

176

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

177

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

178

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

179

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

180

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

• open condition;

181

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

• open condition;

• conformally invariant; and

182

Every del Pezzo surface has b+ = 1. ⇐⇒

Up to scale, ∀ h, ∃! self-dual harmonic 2-form ω:

dω = 0, ?ω = ω.

Such a form defines a symplectic structure, exceptat points where ω = 0.

Definition. Let M be smooth 4-manifold withb+(M) = 1. We will say that a Riemannianmetric h on M is of symplectic type if associatedSD harmonic ω is nowhere zero.

• open condition;

• conformally invariant; and

• holds in Kahler case.

183

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

184

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

185

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

186

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

187

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

188

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

189

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Notice that

190

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Notice that

• =⇒ ω is symplectic form.

191

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Notice that

• =⇒ ω is symplectic form.

• =⇒ W+ is everywhere non-zero.

192

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

193

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

However,

194

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

However,

• recall that W+ is trace-free; so

195

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

However,

• recall that W+ is trace-free; so

• wherever W+ non-zero, has positive directions.

196

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

197

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Thus, we are really just demanding that

198

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Thus, we are really just demanding that

• ω 6= 0 everywhere;

199

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Thus, we are really just demanding that

• ω 6= 0 everywhere;

•W+ 6= everywhere; and

200

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

Thus, we are really just demanding that

• ω 6= 0 everywhere;

•W+ 6= everywhere; and

•W+ and ω are everywhere roughly aligned.

201

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

202

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

203

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

• conformally invariant; and

204

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

• conformally invariant; and

• holds for (almost) Kahler metrics with s > 0.

205

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

• conformally invariant; and

• holds for (almost) Kahler metrics with s > 0.

Kahler =⇒ W+ =

− s12− s

12s6

206

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

• conformally invariant; and

• holds for (almost) Kahler metrics with s > 0.

207

Definition. Let M be smooth compact 4-manifoldwith b+(M) = 1. We will say that a Riemannianmetric h is of positive symplectic type if Weylcurvature and SD harmonic form ω satisfy

W+(ω, ω) > 0

at every point of M .

• open condition;

• conformally invariant; and

• holds for (almost) Kahler metrics with s > 0.

208

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

209

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

210

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

211

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

212

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

213

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

In other words, h is known, and is either

214

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

In other words, h is known, and is either

•Kahler-Einstein, with λ > 0; or

215

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

In other words, h is known, and is either

•Kahler-Einstein, with λ > 0; or

• Page metric on CP2#CP2; or

216

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

In other words, h is known, and is either

•Kahler-Einstein, with λ > 0; or

• Page metric on CP2#CP2; or

• CLW metric on CP2#2CP2.

217

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

In other words, h is known, and is either

•Kahler-Einstein, with λ > 0; or

• Page metric on CP2#CP2; or

• CLW metric on CP2#2CP2.

Conversely, all these are of positive symplectic type.

218

For M4 a Del Pezzo surface, set

219

For M4 a Del Pezzo surface, set

considered as smooth compact oriented 4-manifold,

220

For M4 a Del Pezzo surface, set

221

For M4 a Del Pezzo surface, set

222

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

223

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

E +ω (M) = {Einstein h with W+(ω, ω) > 0}/∼

224

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

E +ω (M) = {Einstein h with W+(ω, ω) > 0}/∼

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

225

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

E +ω (M) = {Einstein h with W+(ω, ω) > 0}/∼

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

226

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

E +ω (M) = {Einstein h with W+(ω, ω) > 0}/∼

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

227

For M4 a Del Pezzo surface, set

E (M) = {Einstein h on M}/(Diffeos× R+)

E +ω (M) = {Einstein h with W+(ω, ω) > 0}/∼

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

Corollary.E +ω (M) is exactly one connected com-

ponent of E (M).

228

Method of Proof.

229

Key Observation:

230

Key Observation:

By second Bianchi identity,

231

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

232

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

(δW )bcd := −∇aW abcd = −∇[crd]b +

1

6hb[c∇d]s

233

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

(δW )bcd := −∇aW abcd = −∇[crd]b +

1

6hb[c∇d]s

Our strategy:

234

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

(δW )bcd := −∇aW abcd = −∇[crd]b +

1

6hb[c∇d]s

Our strategy:

study weaker equation

235

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

(δW )bcd := −∇aW abcd = −∇[crd]b +

1

6hb[c∇d]s

Our strategy:

study weaker equation

δW+ = 0

236

Key Observation:

By second Bianchi identity,

h Einstein =⇒ δW+ = (δW )+ = 0.

(δW )bcd := −∇aW abcd = −∇[crd]b +

1

6hb[c∇d]s

Our strategy:

study weaker equation

δW+ = 0

as proxy for Einstein equation.

237

Now suppose that ω 6= 0 everywhere.

238

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

239

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

g =1√2|ω|h.

240

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

g =1√2|ω|h.

This g is almost-Kahler:

241

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

g =1√2|ω|h.

This g is almost-Kahler:

related to symplectic form ω by

242

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

g =1√2|ω|h.

This g is almost-Kahler:

related to symplectic form ω by

g = ω(·, J ·)

243

Now suppose that ω 6= 0 everywhere.

Rescale h to obtain g with |ω| ≡√

2:

g =1√2|ω|h.

This g is almost-Kahler:

related to symplectic form ω by

g = ω(·, J ·)

for some g-preserving almost-complex structure J .

244

Weitzenbock for harmonic self-dual 2-form ω:

245

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

246

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

Taking inner product with ω:

247

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

Taking inner product with ω:

0 =1

2∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3|ω|2

248

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

Taking inner product with ω:

0 =1

2∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3|ω|2

In almost-Kahler case, |ω|2 ≡ 2, so

249

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

Taking inner product with ω:

0 =1

2∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3|ω|2

In almost-Kahler case, |ω|2 ≡ 2, so

1

2|∇ω|2 = W+(ω, ω)− s

3

250

Weitzenbock for harmonic self-dual 2-form ω:

0 = ∇∗∇ω − 2W+(ω, ·) +s

Taking inner product with ω:

0 =1

2∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3|ω|2

In almost-Kahler case, |ω|2 ≡ 2, so

1

2|∇ω|2 = W+(ω, ω)− s

3

W+(ω, ω) ≥ s

3

251

Equation δW+ = 0? not conformally invariant!

252

Equation δW+ = 0 not conformally invariant!

253

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

254

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

255

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

then g instead satisfies

256

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

then g instead satisfies

δ(fW+) = 0

257

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

then g instead satisfies

δ(fW+) = 0

which in turn implies the Weitzenbock formula

258

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

then g instead satisfies

δ(fW+) = 0

which in turn implies the Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

259

Equation δW+ = 0 not conformally invariant!

If h = f2g satisfies

δW+ = 0

then g instead satisfies

δ(fW+) = 0

which in turn implies the Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

for fW+ ∈ End(Λ+).

260

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

261

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω⊗ω and integrate by parts, using identity

262

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω⊗ω and integrate by parts, using identity

263

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

264

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

265

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

266

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 =

∫M

(−sW+(ω, ω) + 8|W+|2 − 4|W+(ω)⊥|2

)f dµ,

267

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 =

∫M

(−sW+(ω, ω) + 8|W+|2 − 4|W+(ω)⊥|2

)f dµ,

where W+(ω)⊥ = projection of W+(ω, ·) to ω⊥.

268

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 =

∫M

(−sW+(ω, ω) + 8|W+|2 − 4|W+(ω)⊥|2

)f dµ

269

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 ≥∫M

(−sW+(ω, ω) + 3

[W+(ω, ω)

]2 )f dµ

270

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 ≥ 3

∫MW+(ω, ω)

(W+(ω, ω)− s

3

)f dµ

271

Now take inner product of Weitzenbock formula

0 = ∇∗∇(fW+) +s

2fW+ − 6fW+ ◦W+ + 2f |W+|2I

with 2ω ⊗ ω and integrate by parts, using identity

〈W+,∇∗∇(ω⊗ω)〉 = [W+(ω, ω)]2+4|W+(ω)|2−sW+(ω, ω) .

This yields

0 ≥ 3

∫MW+(ω, ω)

(1

2|∇ω|2

)f dµ

272

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

273

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

274

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

275

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

276

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

277

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

278

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

279

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

280

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

281

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

282

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

283

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

284

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

285

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

Kahler =⇒ W+ =

− s12− s

12s6

286

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

287

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

Conversely, any Kahler (M4, g, ω) with s > 0 sat-isfies W+(ω, ω) > 0, and f = c/s solves

288

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

Conversely, any Kahler (M4, g, ω) with s > 0 sat-isfies W+(ω, ω) > 0, and f = c/s solves

289

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

Conversely, any Kahler (M4, g, ω) with s > 0 sat-isfies W+(ω, ω) > 0, and f = c/s solves

∇(fW+) = 0 =⇒ δ(fW+) = 0.

290

Proposition. If compact almost-Kahler (M4, g, ω)satisfies δ(fW+) = 0 for some f > 0, then

0 ≥∫MW+(ω, ω)|∇ω|2f dµ

Corollary. Let (M4, g, ω) be a compact almost-Kahler manifold with W+(ω, ω) > 0. If

δ(fW+) = 0

for some f > 0, then g is a Kahler metric withscalar curvature s > 0. Moreover, f = c/s forsome constant c > 0.

Conversely, any Kahler (M4, g, ω) with s > 0 sat-isfies W+(ω, ω) > 0, and f = c/s solves

∇(fW+) = 0 =⇒ δ(fW+) = 0.

291

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

292

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

293

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

294

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

295

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

296

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

297

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

298

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

299

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

300

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

301

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

302

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

303

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

304

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

305

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

306

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

307

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

308

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

309

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

Remark. If such metrics exist, b+(M) = 1.

310

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

311

Theorem. Let (M,h) be a compact oriented Rie-mannian 4-manifold with δW+ = 0. If

W+(ω, ω) > 0

for some self-dual harmonic 2-form ω, then

h = s−2g

for a unique Kahler metric g of scalar curvatures > 0.

Conversely, for any Kahler metric g of positivescalar curvature, the conformally related metrich = s−2g satisfies δW+ = 0 and W+(ω, ω) > 0.

Theorem A follows by restricting to Einstein case.

312

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

313

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

314

Theorem A. Let (M,h) be a smooth compact4-dimensional Einstein manifold. If h is of posi-tive symplectic type, then it’s a conformally Kahler,Einstein metric on a Del Pezzo surface (M,J).

Corollary. E +ω (M) is connected. Moreover, if

b2(M) ≤ 5, then E +ω (M) = {point}.

Corollary.E +ω (M) is exactly one connected com-

ponent of E (M).

315

Application to Almost-Kahler Geometry:

316

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

317

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

318

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

319

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

320

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

321

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

322

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

323

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

324

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

In particular, gives a new proof of the following:

325

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-KahlerEinstein 4-manifold with non-negative Einsteinconstant is Kahler-Einstein.

326

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-KahlerEinstein 4-manifold with non-negative Einsteinconstant is Kahler-Einstein.

(Special case of “Goldberg conjecture.”)

327

Theorem. Let (M, g, ω) be a compact almost-Kahler 4-manifold with

s ≥ 0, δW+ = 0.

Then (M, g, ω) is a constant-scalar-curvature Kahler(“cscK”) manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-KahlerEinstein 4-manifold with non-negative Einsteinconstant is Kahler-Einstein.

Helped motivate the discovery of Theorem A. . .

328

Tanti auguri, Stefano!

329

Tanti auguri, Stefano!

E grazie agli organizzatori

330

Tanti auguri, Stefano!

E grazie agli organizzatori

per un convegno cosı bello!

331