Constraints on matter from asymptotic...

Post on 26-Sep-2020

3 views 0 download

Transcript of Constraints on matter from asymptotic...

Asymptotic safety 1-loop FRGE Matter Conclusions

Constraints on matter

from asymptotic safety

Roberto Percacci

SISSA, Trieste

Padova, February 19, 2014

Asymptotic safety 1-loop FRGE Matter Conclusions

Fixed points

Γk(φ) =∑

i

λi(k)Oi (φ)

βi (λj , k) =dλi

dt, t = log(k/k0)

λi = k−diλi

βi =dλj

dt= −di λi + k−diβi

Fixed point: βi (λj∗) = 0

“Asymptotically safe” RG trajectory: λi → λi∗

UV attractive=IR repulsive=relevant

UV-repulsive=IR attractive=irrelevant

predictivity demands finitely many relevant directions

Asymptotic safety 1-loop FRGE Matter Conclusions

General picture

Asymptotic safety 1-loop FRGE Matter Conclusions

Examples

Gaußian Fixed Point at λi∗ = 0.

Mij

∗= ∂βi

∂λj

∗= −diδij

relevant=renormalizable

- QCD- non-AF examples: 4-Fermi interactions in d = 3- maybe gravity?

Asymptotic safety 1-loop FRGE Matter Conclusions

Outline

1 Asymptotic safety

2 1-loop

3 FRGE

4 Matter

5 Conclusions

Asymptotic safety 1-loop FRGE Matter Conclusions

One Loop Corrections in Einstein’s Theory

kd

dk

1

16πG (k)= ck2

kdG

dk= −16πcG 2k2

G = Gk2

kdG

dk= 2G − 16πcG 2

if c > 0 fixed point at G = 1/8πcone calculation: c = 23/48π2

Asymptotic safety 1-loop FRGE Matter Conclusions

Perturbative beta functions

βG = 2G − 46G 2

6π,

βΛ = −2Λ +2G

4π− 16G Λ

Λ∗ =3

62G∗ =

12π

46

Asymptotic safety 1-loop FRGE Matter Conclusions

Perturbative flow

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

L�

G�

Asymptotic safety 1-loop FRGE Matter Conclusions

Higher derivative gravity

Γk =

d4x√g

[

2ZΛ− ZR +1

(

C 2 − 2ω

3R2 + 2θE

)]

Z =1

16πG

K.S. Stelle, Phys. Rev. D16, 953 (1977).J. Julve, M. Tonin, Nuovo Cim. 46B, 137 (1978).E.S. Fradkin, A.A. Tseytlin,Phys. Lett. 104 B, 377 (1981).I.G. Avramidi, A.O. Barvinski,Phys. Lett. 159 B, 269 (1985).G. de Berredo–Peixoto and I. Shapiro, Phys.Rev. D71 064005 (2005).A. Codello and R. P., Phys.Rev.Lett. 97 22 (2006)N. Ohta and R.P. Class. Quant. Grav. 31 015024 (2014); arXiv:1308.3398

Asymptotic safety 1-loop FRGE Matter Conclusions

Beta functions I

βλ = − 1

(4π)2133

10λ2

βω = − 1

(4π)225 + 1098ω + 200ω2

60λ

βθ =1

(4π)27(56 − 171θ)

90λ

λ(k) =λ0

1 + λ01

(4π)213310 log

(

kk0

)

ω(k) → ω∗ ≈ −0.0228

θ(k) → θ∗ ≈ 0.327

Asymptotic safety 1-loop FRGE Matter Conclusions

Beta functions II

βΛ = −2Λ +1

(4π)2

[

1 + 20ω2

256πGω2λ2 +

1 + 86ω + 40ω2

12ωλΛ

]

−1 + 10ω2

64π2ωλ+

2G

π− q(ω)G Λ

βG= 2G − 1

(4π)23 + 26ω − 40ω2

12ωλG−q(ω)G 2

where q(ω) = (83 + 70ω + 8ω2)/18π

Asymptotic safety 1-loop FRGE Matter Conclusions

Flow in Λ–G plane I

βΛ = −2Λ +2G

π− q∗G Λ

βG = 2G − q∗G2

where q∗ = q(ω∗) ≈ 1.440

Λ∗ =1

πq∗≈ 0.221 , G∗ =

2

q∗≈ 1.389 .

Asymptotic safety 1-loop FRGE Matter Conclusions

Flow in Λ–G plane II

-0.5 0.0 0.5 1.0-0.5

0.0

0.5

1.0

1.5

2.0

L�

G�

Asymptotic safety 1-loop FRGE Matter Conclusions

Topologically massive gravity

Action

S(g)=1

16πG

d3x√g(

2Λ− R + 12µ ε

λµνΓρλσ(

∂µΓσνρ +

23Γ

σµτΓ

τνρ

)

)

Dimensionless combinations of couplings

ν = µG ; τ = ΛG 2 ; φ = µ/√

|Λ|

R.P., E. Sezgin, Class.Quant.Grav. 27 (2010) 155009, arXiv:1002.2640 [hep-th]

Recently extended to TM SUGRA: R.P., M. Perry, C. Pope, E. Sezgin, arXiv 1302.0868

Asymptotic safety 1-loop FRGE Matter Conclusions

Beta functions of

βν = 0 ,

βG = G + B(µ)G 2 ,

βΛ = −2Λ +1

2G(

A(µ, Λ) + 2B(µ)Λ)

Since ν = µG = µG is constant

can replace µ by ν/G

Asymptotic safety 1-loop FRGE Matter Conclusions

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

L�

G�

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

L�

G�

Figure : The flow in the Λ-G plane for α = 0, ν = 5. Right:

enlargement of the region around the origin, showing the Gaussian FP.

The beta functions become singular at |G | = 1.9245.

Asymptotic safety 1-loop FRGE Matter Conclusions

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

L�

G�

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

L�

G�

Figure : The flow in the Λ-G plane for α = 0, ν = 0.1. Right:

enlargement of the region around the origin, showing that there is no

Gaussian FP. The beta functions diverge on the Λ axis.

Asymptotic safety 1-loop FRGE Matter Conclusions

Functional renormalization

Define Γk(φ). limk→0 Γk(φ) = Γ(φ). It satisfies a FRGE

kdΓk(φ)

dk= β(φ)

The quantity β is UV and IR finite.

Use FRGE to calculate the effective action.

Asymptotic safety 1-loop FRGE Matter Conclusions

Application to gravity

Background field method: qµν = gµν + hµν

FRGE can only be defined for Γk(g , h). Expand

Γk(g , h) = Γk(g) + Γ(1)k (g , h) + Γ

(2)k (g , h) + . . .

Γk(g) = Γk(g , 0)

Single-field truncations: neglect Γ(n)k (g , h), n > 0.

[M. Reuter, Phys. Rev. D 57 971(1998)]

[D. Dou and R. Percacci, Class. and Quantum Grav. 15 3449 (1998)]

Asymptotic safety 1-loop FRGE Matter Conclusions

Single-field truncation

In the FRGE identify Zh with 116πG . Consequently identify

ηh = −kd log Zh

dk

with

ηh = kd logG

dk

Asymptotic safety 1-loop FRGE Matter Conclusions

Einstein–Hilbert truncation I

Γk(g , h) = SEH(gµν + h) + SGF (g , h) + Sghost(g , Cµ,Cν)

SEH(gµν) =

dx√gZ (2Λ− R) ; Z =

1

16πG

βΛ =−2(1 − 2Λ)2Λ + 36−41Λ+42Λ2

−600Λ3

72π G + 467−572Λ288π2 G 2

(1 − 2Λ)2 − 29−9Λ72π G

βG =2(1 − 2Λ)2G − 373−654Λ+600Λ2

72π G 2

(1 − 2Λ)2 − 29−9Λ72π G

Asymptotic safety 1-loop FRGE Matter Conclusions

Einstein–Hilbert truncation II

-0.2 -0.1 0.1 0.2 0.3 0.4 0.5L�

0.2

0.4

0.6

0.8

1

G�

Cutoff type Ia

-0.2 -0.1 0.1 0.2 0.3 0.4 0.5L�

0.2

0.4

0.6

0.8

1

G�

Cutoff type II

Asymptotic safety 1-loop FRGE Matter Conclusions

Fourth order gravity

R2 O.Lauscher, M. Reuter, Phys. Rev. D 66, 025026 (2002)arXiv:hep-th/0205062

R2 + C 2 D. Benedetti, P.F. Machado, F. Saueressig, Mod.Phys. Lett. A24, 2233-2241 (2009) arXiv:0901.2984 [hep-th]Nucl. Phys. B824, 168-191 (2010), arXiv:0902.4630 [hep-th]

M. Niedermaier, Nucl. Phys. B833, 226-270 (2010)

Asymptotic safety 1-loop FRGE Matter Conclusions

f (R) gravity

Γk(gµν) =

d4x√gf (R)

f (R) =

n∑

i=0

gi (k)Ri

n=6A. Codello, R.P. and C. Rahmede Int.J.Mod.Phys.A23:143-150 arXiv:0705.1769 [hep-th];n=8A. Codello, R.P. and C. Rahmede Annals Phys. 324 414-469 (2009) arXiv: arXiv:0805.2909;P.F. Machado, F. Saueressig, Phys. Rev. D arXiv: arXiv:0712.0445 [hep-th]n=35K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, arXiv:1301.4191 [hep-th]n=∞

Dario Benedetti, Francesco Caravelli, JHEP 1206 (2012) 017, Erratum-ibid. 1210 (2012) 157arXiv:1204.3541 [hep-th]Juergen A. Dietz, Tim R. Morris, JHEP 1301 (2013) 108 arXiv:1211.0955 [hep-th]Dario Benedetti, arXiv:1301.4422 [hep-th]

Asymptotic safety 1-loop FRGE Matter Conclusions

Enter matter

because it’s there

because it may help (large N limit)

because pure gravity has no local observables

because experimental constraints more likely

e.g. M. Shaposhnikov and C. Wetterich, Phys.Lett. B683, 196(2010)

[L. Griguolo, R.P. Phys. Rev. D 52, 5787 (1995)]

[R.P., D.Perini, Phys.Rev. D 67 081503 (2003)]

[R.P., D.Perini, Phys. Rev. D68, 044018 (2004)]

[G. Narain. R.P. Class. Quant. Grav. 27 075001 (2010)]

[P. Donà, A. Eichhorn, R.P. arXiv:1311.2898 [hep-th](2013)]

Asymptotic safety 1-loop FRGE Matter Conclusions

Perturbative beta functions with matter

βG = 2G +G 2

6π(NS + 2ND − 4NV − 46) ,

βΛ = −2Λ +G

4π(NS − 4ND + 2NV + 2)

+G Λ

6π(NS + 2ND − 4NV − 16)

Λ∗ = −3

4

NS − 4ND + 2NV + 2

NS + 2ND − 4NV − 31,

G∗ = − 12π

NS + 2ND − 4NV − 46.

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plots NV = 0, 6, 12, 24, 45

0 50 100 150 2000

20

40

60

80

100

Asymptotic safety 1-loop FRGE Matter Conclusions

Position of FP for NV = 12

0 20 40 60 800

10

20

30

40

0 20 40 60 800

10

20

30

40

Asymptotic safety 1-loop FRGE Matter Conclusions

Truncated FRGE, bimetric formalism

Γk(g , h) =1

16πG

ddx√g(

−R + 2Λ)

+Zh

2

ddx√g hµνK

µναβ((−D2 − 2Λ)1ρσαβ +W

ρσαβ )hρσ

−√

2Zc

ddx√g cµ

(

DρgµκgκνDρ + DρgµκgρνDκ − DµgρσgρνDσ

)

SS =ZS

2

ddx√g gµν

NS∑

i=1

∂µφi∂νφ

i

SD = iZD

ddx√g

ND∑

i=1

ψi /∇ψi ,

SV =ZV

4

ddx√g

NV∑

i=1

gµνgκλF iµκF

iνλ + . . .

Asymptotic safety 1-loop FRGE Matter Conclusions

Gravitational beta functions

dt= −2Λ +

8πG

(4π)d/2d(d + 2)Γ[d/2]

[

d(d + 1)(d + 2 − ηh)

1 − 2Λ− 4d(d + 2 − ηc )

+2NS (2 + d − ηS ) − 2ND2[d/2]

(2 + d − ηD ) + 2NV (d2− 4 − d ηV )

]

4πG Λ

3d(4π)d/2Γ[d/2]

[

d(5d − 7)(d − ηh)

1 − 2Λ+ 4(d + 6)(d − ηc )

−2NS (d − ηS ) − ND2[d/2]

(d − ηD ) + 2NV (d (8 − d) − (6 − d)ηV )

]

dG

dt= (d − 2)G −

4πG2

3d(4π)d/2Γ(d/2)

[ d(5d − 7)(d − ηh)

1 − 2Λ+ 4(d + 6)(d − ηc )

−2NS (d − ηS ) − ND2[d/2]

(d − ηD ) + 2NV (d(8 − d) − (6 − d)ηV )

]

Asymptotic safety 1-loop FRGE Matter Conclusions

Graviton+ghost contributions to graviton η

∂tγ(2,0,0;0)k = − 2− 1

2

+

Asymptotic safety 1-loop FRGE Matter Conclusions

Graviton contributions to ηh

ηh = ηh∣

gravity+ ηh

matter

ηh

gravity=[

a(Λk ) + c(Λk )ηh + e(Λk )ηc

]

Gk

a(Λ) =a0 + a1Λ + a2 Λ

2 + a3Λ3 + a4Λ

4

(4π)d/2Γ(d/2)d2(d2− 4)(3d − 2)(1 − 2Λ)4

,

a0 = −4π (d − 2) (−896 + 264 d + 1076 d2− 434 d

3+ 21 d

4+ d

5) ,

a1 = 16π (d − 2) (−2048 + 2552 d − 318 d2− 125 d

3+ 2 d

4+ d

5) ,

a2 = −16π(12544 − 25760 d + 16968 d2− 4228 d

3+ 354 d

4− 17 d

5+ d

6) ,

a3 = 4096π(d − 2)(−32 + 50 d − 19 d2+ 2 d

3) ,

a4 = −2048π(d − 2)(−32 + 50 d − 19 d2+ 2 d

3) ;

c(Λ) =8π(d − 1)

[

128 + 720 d − 350 d2 + 29 d3 + 32(d − 2)(d + 4)Λ]

(4π)d/2Γ(d/2) d2(d + 2)(d + 4)(3d − 2)(1 − 2Λ)3

e(Λ) = −

128π(

32 − 50 d + 23 d2

)

(4π)d/2Γ(d/2)d2(d + 2)(d + 4)(3 d − 2)

Asymptotic safety 1-loop FRGE Matter Conclusions

Matter contribution to graviton η

Asymptotic safety 1-loop FRGE Matter Conclusions

Matter contributions to ηh

ηh

matter= −NS

32πG

(4π)d/2Γ(d/2)

1

d2(d + 2)(3d − 2)

[

(d − 2)3+ 2

8 − 10 d + d2

d + 4ηS

]

+ND 2[d/2] 16πG

(4π)d/2Γ(d/2)

(d − 1)(d − 2)

d3(3d − 2)

[

2 +d − 2

d + 1ηD

]

−NV

32πG

(4π)d/2Γ(d/2)

(d − 1)(d − 2)

d2(d + 2)(3d − 2)

[

d2− 12 d + 8 − 2

16 − d

d + 4ηV

]

Asymptotic safety 1-loop FRGE Matter Conclusions

Graviton+ghost contributions to ghost η

∂tγ(0,1,1;0)k = +

Asymptotic safety 1-loop FRGE Matter Conclusions

Ghost ηc

ηc =[

b(Λk) + d(Λk)ηh + f (Λk)ηc

]

Gk

with

b(Λ) =64π

[

−8 + 4 d + 18 d2 − 7 d3 + 2(4 − 9 d2 + 3 d3)Λ]

(4π)d/2Γ(d/2)d2(d2 − 4)(d + 4)(1 − 2Λ)2

d(Λ) =−64π(4 − 4 d − 9 d2 + 4 d3)

(4π)d/2Γ(d/2)d2(d2 − 4)(d + 4)(1 − 2Λ)2

f (Λ) =−64π(4 − 9 d2 + 3 d3)

(4π)d/2Γ(d/2)d2(d2 − 4)(d + 4)(1 − 2Λ)2

Asymptotic safety 1-loop FRGE Matter Conclusions

Graviton contribution to matter η

Asymptotic safety 1-loop FRGE Matter Conclusions

Matter anomalous dimensions

ηS = −

32πG

(4π)d/2Γ(d/2)

[

2

d + 2

1

(1 − 2Λ)2

(

1 −

ηh

d + 4

)

+2

d + 2

1

1 − 2Λ

(

1 −

ηS

d + 4

)

+(d + 1)(d − 4)

2d(1 − 2Λ)2

(

1 −

ηh

d + 2

)

]

,

ηD =32πG

(4π)d/2Γ(d/2)

[

(d − 1)(d2 + 9 d − 8)

8d (d − 2)(d + 1)(1 − 2Λ)2

(

1 −

ηh

d + 3

)

+(d − 1)2

2d(d + 1)(d − 2)

1

1 − 2Λ

(

1 −

ηD

d + 2

)

(d − 1)(2d2− 3d − 4)

4d(d − 2)(1 − 2Λ)2

(

1 −

ηh

d + 2

)

]

ηV = −

32πG

(4π)d/2Γ(d/2)

[

(d − 1)(16 + 10 d − 9 d2 + d3)

2d2(d − 2)(1 − 2Λ)2

(

1 −

ηh

d + 2

)

+4(d − 1)(2d − 5)

d(d2− 4)(1 − 2Λ)

(

1 −

ηV

d + 4

)

+4(d − 1)(2d − 5)

d(d2− 4)(1 − 2Λ)2

(

1 −

ηh

d + 4

)

]

Asymptotic safety 1-loop FRGE Matter Conclusions

General structure of anomalous dimensions

For Ψ = h, c ,S ,D,V ,

ηΨ = − 1

ZΨkdZΨ

dk

~η = (ηh, ηc , ηS , ηD , ηV )

~η = ~η1(G , Λ) + A(G , Λ)~η

one loop anomalous dimensions ~η = ~η1

RG improved anomalous dimensions ~η = (1 − A)−1~η1

Asymptotic safety 1-loop FRGE Matter Conclusions

Gravity+scalars

æ æ æ æ æ æ æ æ æ ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

12

51020

50100200

G�*

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æææææææ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

0.05

0.10

0.15

0.20

0.25

0.30L�*

æ æ æ æ æ æ æ ææææ

æ

æææææææææ

æ

æ

æ

æ

æ

æ

æ æ æ ææ æ æ æ æ

ææ æ

æ

æ

ææææææææææ

æ

æ

æ

5 10 15 20 25NS

10

100

1000

104

ReΘ

æ æ æ æ æ æ æ ææ æ

æææææææææææ

æ

æ

æ

æ

æ

5 10 15 20 25NS

10

20

30

40Ηh

æ æ æ æ æ æ æ æ æ æ æ ææ æ æ

æææææ

æ

æ

æ

æ

æ

5 10 15 20 25NS

-100

-80

-60

-40

-20

Ηcæ æ æ æ æ æ æ æ æ æ æ æ

æ æææææææ

æ

æ

æ

æ

æ

5 10 15 20 25NS

-40

-30

-20

-10

ΗS

Asymptotic safety 1-loop FRGE Matter Conclusions

Gravity+fermions

æ æ æ æ ææ

æ

æ

æ

à à à à àà

à

à

à

2 4 6 8ND

-10

-5

5

10

G�*, L�*

æ

ææ

æ æ æ æ æ æ

à

àà

à à à à à à

2 4 6 8ND

1

2

3

4Θ1, Θ2

æ æ æ ææ

æ

æ

æ

æ

2 4 6 8ND

0.5

1.0

1.5

2.0

2.5Ηh

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 6 8ND

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Ηc

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 6 8ND

-0.4

-0.3

-0.2

-0.1

ΗD

Asymptotic safety 1-loop FRGE Matter Conclusions

Gravity+vectors

æ

æ

æ

æ

æ

æææææææææææææææææææææææææææææææææææææææææææææ

10 20 30 40 50NV

0.1

0.2

0.3

0.4

0.5

0.6

0.7G�*

æ

æ

æ

æ

æ

æ

ææææææææææææææææææææææææææææææææææ

æææææææææ

æ

10 20 30 40 50NV

0.05

0.10

0.15

0.20

0.25

0.30

L�*

æææææææææææææææææææææææææææ

ææææææ

ææææææææ

æææææææææ

àààààààààààààààààààààààààààààààààààààààààààààààààà

10 20 30 40 50NV

1

2

3

4

Θ1, Θ2

æ

æææææææææææææææææææææææææææææææææææææææææææææææææ

10 20 30 40 50NV

0.5

1.0

1.5

Ηh

æ

æ

æ

æ

æ

æ

æ

æææææææææææ

ææææææææææææææææææææææææææææææææ

10 20 30 40 50NV

-0.88

-0.86

-0.84

-0.82

-0.80

Ηc

æ

æ

æ

æ

æ

æ

æ

ææææææææææææææææææææææææææææææææææææææ

æææææ

10 20 30 40 50NV

-0.15

-0.10

-0.05

0.05

ΗV

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot NV = 0

5 10 15 20 25 30NS

5

10

15

N D

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot NV = 12

10 20 30 40 50 60 70NS

10

20

30

40ND

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot ND = 0

10 20 30 40 50 60 70NS

10

20

30

40

50

NV

10 20 30 40 50 60 70NS

10

20

30

40

50

NV

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot NS = 0

10 20 30 40N D

10

20

30

40

50

NV

Asymptotic safety 1-loop FRGE Matter Conclusions

Standard model matter

1L-II full-II 1L-Ia full-Ia

Λ∗ −2.399 −2.348 −3.591 −3.504

G∗ 1.762 1.735 2.627 2.580

θ1 3.961 3.922 3.964 3.919

θ2 1.644 1.651 2.178 2.187

ηh 2.983 2.914 4.434 4.319

ηc −0.139 −0.129 −0.137 −0.125

ηS −0.076 −0.072 −0.076 −0.073

ηD −0.015 0.004 −0.004 0.016

ηV −0.133 −0.145 −0.144 −0.158

Asymptotic safety 1-loop FRGE Matter Conclusions

Specific models

model NS ND NV G∗ Λ∗ θ1 θ2 ηh

no matter 0 0 0 0.77 0.01 3.30 1.95 0.27

SM 4 45/2 12 1.76 -2.40 3.96 1.64 2.98

SM +dm scalar 5 45/2 12 1.87 -2.50 3.96 1.63 3.15

SM+ 3 ν’s 4 24 12 2.15 -3.20 3.97 1.65 3.71

SM+3ν’s+ axion+dm 6 24 12 2.50 -3.62 3.96 1.63 4.28

MSSM 49 61/2 12 - - - - -

SU(5) GUT 124 24 24 - - - - -

SO(10) GUT 97 24 45 - - - - -

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot NV = 12, d = 5

10 20 30 40 50 60NS

5

10

15

20

25

N D

Asymptotic safety 1-loop FRGE Matter Conclusions

Exclusion plot NV = 12, d = 6

10 20 30 40 50 60NS

2468

10N D

Asymptotic safety 1-loop FRGE Matter Conclusions

Gravity+scalar

Γk [g , φ] =

ddx√g

(

V (φ2)− F (φ2)R +1

2gµν∂µφ∂νφ

)

[R.P., D.Perini, Phys. Rev. D68, 044018 (2004)]

[G. Narain, R.P., Class. and Quantum Grav. 27, 075001 (2010)]

Asymptotic safety 1-loop FRGE Matter Conclusions

Functional flow of F , V

∂tV =k4

192π2

{

6 +30 V

Ψ+

6(k2 Ψ + 24φ2 k2 F ′ Ψ′ + k2 FΣ1)

∆+

(

4

F+

5 k2

Ψ+

k2 Σ1

)

∂tF +24φ2 k2 Ψ′

∆∂tF

}

,

∂tF =k2

2304π2

{

150 +120 k2 F (3 k2F − V )

Ψ2−

24

(

24φ2k2F′Ψ′+ k

2Ψ + k

2FΣ1

)

36

∆2

[

−4φ2(6 k

4F′2

+ Ψ′2) ∆ + 4φ

2ΨΨ

′(7 k

2F′− V

′) (Σ1 − k

2) + 4φ

2Σ1 (7 k

2F′− V

′) (2Ψ V

′− V Ψ

′)

+2 k4Ψ

2Σ2 + 48 k

4F′φ

2ΨΨ

′Σ2 − 24 k

4F φ

2Ψ′2

Σ2

]

∂tF

F

[

30 −

10 k2F (7Ψ + 4 V )

Ψ2+

6

∆2

(

k2F Σ1 ∆ + 4φ

2V

′Ψ′∆ − 24 k

4F φ

2Ψ′2

Σ2

−4φ2k2F Ψ

′Σ1(7 k

2F′− V

′)

)]

+ ∂tF′

24 k2 φ2

∆2

[

(k2F′+ 5 V

′)∆ − 12 k

2ΨΨ

′Σ2 − 2 (7 k

2F′− V

′) ΨΣ1

]}

where we have defined the shorthands:

Ψ = k2F − V ; Σ1 = k

2+ 2V

′+ 4φ

2V

′′; Σ2 = 2 F

′+ 4φ

2F′′

; ∆ =(

12φ2Ψ′2

+ ΨΣ1

)

.

Asymptotic safety 1-loop FRGE Matter Conclusions

Polynomial truncations

V (φ2) = λ0 + λ2φ2 + λ4φ

4 + . . .

F (φ2) = ξ0 + ξ2φ2 + . . .

∂t λ4 =9λ2

4

2π2+

Gλ4

π+ . . .

Asymptotic safety 1-loop FRGE Matter Conclusions

SM+gravity

dh

dt= βSMh +

ah

8πG (µ)h

βSM1 =

1

16π2

41

6g3

1 ; βSM2 = − 1

16π2

19

6g3

2 ; βSM3 = − 1

16π27g3

3 ;

βSMy =

1

16π2

[

9

2y3 − 8g2

3y − 9

4g2

2y − 17

21g2

1y

]

βSMλ =

1

16π2

[

24λ2+ 12λy2− 9λ

(

g2

2 +1

3g2

1

)

− 6y4+9

8g4

2 +3

8g4

1 +3

4g2

2g2

1

]

If a1 = a2 = a3 < 0, ay < 0, aλ > 0, predict mh=126GeV[M. Shaposhnikov and C. Wetterich, Phys.Lett. B683, 196 (2010) ]

Asymptotic safety 1-loop FRGE Matter Conclusions

AS: strengths and weaknesses

use continuum covariant QFT

bottom up approach

guaranteed to give correct low energy limit

highly predictive

but

strong coupling problem

scheme dependence

off shell: gauge dependence

no observables computed yet

Asymptotic safety 1-loop FRGE Matter Conclusions

Summary/outlook

Pure gravity:

truly functional truncations

other approximations, e.g. two loops

describe as CFT

Gravity+matter:

BSM physics strongly constrained

running gravitational mass from 2 point function

matter interactions: LPA for scalar+gravity

turn on gauge and Yukawa couplings