現代物理学への招待 低温物理学 超伝導 - Tsukuba...Diamagnetic Meissner effect Disks...

Post on 02-Sep-2021

2 views 0 download

Transcript of 現代物理学への招待 低温物理学 超伝導 - Tsukuba...Diamagnetic Meissner effect Disks...

物理学セミナー 050601

微小超伝導体における新しい渦の観測

物理学専攻 神田晶申

アウトラインメゾスコピック超伝導体とは?

渦糸状態の特徴

実験方法

巨大渦糸状態の観測

渦糸状態間転移の温度依存

まとめ

超伝導とはどんな状態か?金属の抵抗の温度依存性

青: 通常の金属

赤: 磁性不純物を含む金属(近藤効果)

緑: 超伝導金属

抵抗

温度

50)( BTT += ρρ

臨界温度TC以下で抵抗が

完全にゼロ(完全導電性)

TC

いろいろな超伝導体元素(51種)

合金(約1000種)

金属化合物(約500種)   窒化物、炭化物など

金属間化合物(約200種)

有機物(約20種)

トコトンやさしい超伝導の本(下山淳一、日刊工業新聞社)

液体窒素(77K)

BCS理論の壁

 磁場中の振る舞い  超伝導体と完全導体

ゼロ磁場で冷却(ZFC: zero-field cooling)

常伝導状態(T>Tc) 超伝導状態(T<Tc)

磁場印加冷却

Js

Js:遮蔽電流

レンツの法則:外部磁場の変化を妨げるような磁場を作る向きに電流が流れる。(電磁誘導)

完全導体では、抵抗ゼロなのでその電流は減衰せず流れ続ける。従って、磁場は永遠に侵入できない。

ZFCでの超伝導体の振舞は完全導体として理解できる。

 超伝導体と完全導体の違い

磁場中で冷却(FC: field cooling)

常伝導状態(T>Tc) 超伝導状態(T<Tc)

完全導体の性質:磁場の時間変化がないので磁場侵入のまま。

冷却

Js

超伝導体:磁場を完全にはじき出す。(完全導電性とは独立の性質)

完全反磁性(マイスナー効果)Js:遮蔽電流

超伝導体の2大特徴完全導電性

完全反磁性(マイスナー効果)超伝導体は単なる「抵抗が無限に小さくなった金属」ではない!

超伝導になる ・・・ 新しい状態への『相転移』 

浮き磁石

磁力線の歪みに由来する力と重力がつりあう。

超伝導はこわれやすい磁場、電流、温度が大きすぎると超伝導は壊れる。

電流密度

超伝導状態

温度

臨界電流密度:Jc

臨界磁場:Hc

臨界温度:Tc

磁場

高臨界温度、高臨界磁場、高電流密度の実現が実用化の課題

2種類の超伝導体

HC1

磁場

Tc

マイスナー状態

(完全反磁性)

Hc

磁場

マイスナー状態

(完全反磁性)

Tc温度

HC2

混合状態

(渦糸状態)

0 0

第1種超伝導体 第2種超伝導体

ξ: コヒーレンス長(クーパー対の拡がり)λ: 磁場侵入長 (遮蔽電流の流れる範囲)

2/1/ >= ξλκ 2/1/ <= ξλκ

Js

Js:遮蔽電流

温度

HC2は10Tに達することもある

(超伝導電磁石に使える!)

Hcは0.01T程度(小さい!)

第2種超伝導体の混合状態

遮蔽電流

印加磁場

渦糸(vortex)

中心部直径ξ程度が常伝導で、量子化磁束                  が貫く。その周りλ程度の範囲にΦ0を作るための超伝導電流の渦が流れる。渦糸の周りでオーダーパラメタ            の位相は2π変化する。

wb1022/ 150

−×==Φ eh

渦糸は三角格子を組む(アブリコゾフ)

)exp( θiΨ=Ψ

混合状態に電流を流すと・・・

電流

電流によって、渦糸はローレンツ力を受け、動き出す。

電圧、ジュール熱発生

超伝導破壊   だめ!!

解決法

超伝導体中に、意図的に欠陥、不純物を導入する。渦糸は、そこにピン止めされ、大電流まで動かない。

ピン止め中心のつくりかたと超電導ナノ工学

従来のピン止め中心結晶中の不純物、空孔、転位、析出物、結晶粒界

材料の焼きなましで非超伝導層をつくる(Nb-Ti合金)重イオン照射により柱状欠陥を導入する

空間分布などの制御が困難

これからの方向 超伝導ナノ工学ナノテクを駆使した渦糸配置制御

電子ビームリソグラフィー、収束イオンビーム加工…新しい特性、機能を発現させる

Moshchalkov (ベルギー)

M: 磁化

メゾスコピック超伝導体とは?

サイズ:超伝導コヒーレンス長 ξ や磁場侵入深さ λと同程度.

渦糸配置?アブリコゾフの三角格子

試料端との相互作用

の競合によって決まる

Multi- and giant vortex states

(d)

(b)

(c)

(a)

Vorticity L = 5

Cooper-pairdensity

Phase of theorder parameter

Giant vortex state(巨大渦糸状態)

Multivortex state(多重渦糸状態)

(渦度)他の量子系では、巨大渦糸は見つかっていない。

)1(2 >nnπ

超伝導の理論現象論- 仮定の下に理論を構築。実験結果をよく説明

London理論 1935年

ギンツブツグ-ランダウ理論  1950年後に微視的理論から導かれた。

さまざまな複雑な状況に適用可能な強力な理論

微視的理論- 完全に現象を説明するBCS 理論 (Bardeen, Cooper, Schieffer) 1957年

Theoretical formalism

Dimensionless Ginzburg-Landau equations:

( )( ) ( )

2 2

2* *2

1 12

i A

A Ai

ψ ψ ψ ψ

ψ ψ ψ ψ ψκ

− ∇ − = −

⎡ ⎤∇ × ∇ × = ∇ − ∇ −⎢ ⎥⎣ ⎦

r r

r r r r r r

( )0

boundary0

A A

n i A ψ∞=

⋅ − ∇ − =

r r

r rr

• Boundary conditions:

試料サイズによって、渦糸状態はどう変わるか?

Disks with radius R <<ξNo vortices can enter the sample. Only the Meissner state (L = 0) is stable.

Diamagnetic Meissner effect

Disks with R ≈ξSeveral vortices can enter the sample, but the boundary imposes its symmetry on the vortex configuration.Only axially symmetric states or Giant vortex statescan nucleate.

Cooper-pair densityL = 2 R = 2ξ

V.A. Schweigert, PRB 1998

Disks with R ≈ 4ξStabilization of the multivortex state: in some magnetic field regions, several single vortices nucleate on one shell in the disk.

Cooper-pair densityL = 5 R = 4ξ

V.A. Schweigert, PRL 1998

Disks with R ≈ 4ξ (free energy)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

H0/Hc2

65

4

3

2

1

L = 0

R = 4.0ξ

F/F 0

Multivortex statesGiant vortex states

Disks with R ≈ 4ξ (L = 3)The magnetic field distribution for different values of the externally applied magnetic field.

-4

-2

0

2

4

(a)

H=0.525Hc2

y/ξ

(b)

H=0.65Hc2

-4 -2 0 2 4

-4

-2

0

2

4

(c)

H=0.75Hc2

y/ξ

x/ξ-4 -2 0 2 4

(d)

H=0.8Hc2

x/ξ

2004/12

Disks with R ≈ 6ξIn some magnetic field regions more shells of vortices can become stable.Different vortex configurations with the same total number of vortices can nucleate.

Cooper-pair densityL = 13

B.J. Baelus, PRB 2004

Disks with R ≈ 6ξThe combination of the giant vortex state and the multivortex state becomes possible.

Cooper-pair densityL = 14

Phase of theorderparameter

B.J. Baelus, PRB 2004

L = 8

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

x/ξ

y/ξ

Disks with R ≈ 6ξ (Free energy)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-1.0-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0

L vortices on a ring L - 1 vortices on a ring +

1 vortex in the center Giant vortex state with vorticity L L - 2 vortices on a outer ring +

2 vortices on a inner ring L - 3 vortices on a outer ring +

3 vortices on a inner ring

R = 6.0ξ

F/F 0

H0/Hc2

L = 9

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

x/ξ

y/ξ

L = 15

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

x/ξ

y/ξ

L = 11

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

x/ξ

y/ξ

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

x/ξ

y/ξ

L = 13

0.7 0.8 0.9 1.0 1.1-0.25

-0.20

-0.15

-0.10

-0.05

0.00

1413

12

R = 6.0ξ

F/F 0

H0/Hc2

Disks with R ≈ 20ξDifferent configurations for L = 16

-20 -15 -10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

15

20

x/ξ

y/ξ

-20 -15 -10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

15

20

x/ξ

y/ξ

-20 -15 -10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

15

20

x/ξ

y/ξ

B.J. Baelus, PRB 2004

Disks with R ≈ 50ξTriangular lattice in the center

Cooper-pair densityL = 232

Cooper-pair densityL = 44

L. R. E. Cabral, PRB (2004)

Theoretical prediction for size dependence of vortex states

sample sizeR<<ξ Bulk

MVS +GVSGVSMeissner(No vortex)

(Baelus et al., 2004)

triangle latticeseveral shellssingle shell

radius R=2ξ R=6ξR=4ξ R=50ξ

  small samples →GVSs are preferred  large samples →MVSs

渦糸状態の試料形状依存性

Stability of the vortex states

L = 2

L = 3

L = 4Theoretically, vortex configuration corresponding to the sample shape is stable.

Anti-vortex?

(Moshchalkov)

In type II, v-av patterns are unstable.

But, in type I v-av patterns should be stable (Moshchalkov 2001).

メゾスコピック超伝導体の実験方法

Experimental probes for mesoscopic superconductors - direct method

・ Scanning SQUID microscopy (Kadowaki)Nb disk (50 µm)

- Resolution is still not sufficient.

Experimental probes for mesoscopic superconductors - indirect methods

・ Resistance measurement; cusps in Tc(B) is obtained.(Moshchalkov)

・ Magnetization measurement by ballistic Hall Magnetometry (Geim, Moshchalkov)

–Numerical study (minimization of the free energy) is essential in order to identify the vortex states (even to determine GVSs or MVSs).

Multiple-small-tunnel-junction (MSTJ) method

superconductor

normal metal lead

SIN junction -20

-15

-10

-5

0

5

10

15

20

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

I(nA

)

V(m V)

I I (0.1 nA)

eJsBVg /),(∆=

- By using small tunnel junction ( ), one can detect change in local energy gap, which is related to the supercurrent, Js, flowing underneath the junction.

- By using multiple small tunnel junctions, one can study supercurrent distribution.

ξ≈size

Example: Magnetic response of mesoscopic rings

Cu leads

Al ring

V

I

This voltage change has two origins:(1) smearing of the energy gap due to pair-breaking by the magnetic field.

--- monotonic decrease of V as a function of B(2) decrease of the energy gap by the supercurrent underneath the junction.

Current was fixed at 100 pA.

B

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−∆=∆

2

2721)0()(

C

SS J

JJ (Bardeen, 1962)

Disks for Multiple-small-tunnel-junction (MSTJ) measurement

Fabricated using e-beam lithography and angle evaporation technique.

Cu

Al diskradius: 0.75µm, thickness: 33nm

tunnel junctionresistance > 20 kΩ(no proximity effect)

- Four tunnel junctions are attached to the periphery of the disk.

- Voltages, VA, VB, VC, and VD, at I = 0.1 nA were measured simultaneously as a function of perpendicular magnetic field and temperature.

bias current I

VA VB VC VD

120 o

ξ = 0.15 – 0.19 µm

How to distinguish GVS from MVSContour plots of the current density

By comparing voltages of junctions at the disk periphery one can distinguish between MVS and GVS.

Axial symmetry:VA = VB = VC = VD

Non-Axial symmetry:VA ≠ VB ≠ VC ≠ VD

A B C D

120 o

only symmetric with respect to central axis

Magnetic field dependence of voltage in decreasing B

sweep

T=0.03K

MVS at L = 2, 4 – 11

Each voltage jump corresponds to a transition of vortex states with ∆L = -1.

The sample is symmetric with respect to the central axis, so VA and VD (VB and VC) can be compared.

To remove the effect of small resistance difference, dV/dB is taken.

Magnetic field dependence of voltage in increasing B

MVS at L = 4 – 6.

Theoretical study

Ginzburg-Landau theory, taking into account the demagnetization effect. (R = 5 ξ, d = 0.1 ξ, κ = 0.23) (V. A. Schweigert et al.(1998))

MVS:L = 3 - 6 (theory)

L = 4 - 6 (exp)

MVS:L = 2 - 10 (theory)

L = 2, 4 - 11(exp)

increasing B decreasing B

Theoretical calculations confirm the identification of GVS and MVS by MSTJ method, except for L = 3 and 11.

L = 3 ?

Cooper-pair density

L = 3 L = 6 L = 9

The L = 3 state has trigonal symmetry, corresponding to the angle .For the L = 6 and 9 states, the difference in dVA/dB and dVD/dB is large, presumably due to the effect of defects.

AOD∠

Effect of defects

- At L = 0 state, all curves are parallel to each other, indicating no defect near the junctions.

- At L = 1, curves are not parallel presumably because of a defect close to (but not at) disk center.

increasing B

decreasing B

The whole L = 8 state

In the

- no hysteresis (2nd order transition)

- additional 1st order transition with hysteresis, possibly due to a transition between different MVSs with the same L.

L = 8 state, MVS-to-GVS transition is observed.

Theoretical analysis for L = 8 state

MVS-to-GVS transition appears.

No transition with hysteresis

Effect of defects

- At L = 0 state, all curves are parallel to each other, indicating no defect near the junctions.

- At L = 1, curves are not parallel presumably because of a defect close to (but not) at disk center.

increasing B

decreasing B

Defect close to (but not at) the disk center

Theoretical analysis for L = 8 state with a defect

Defects lead to additional first order transitions with the sameL.

Defect: a circular hole with radius = 0.1 ξ at 0.2 ξ from the disk center

まとめ (1)

メゾスコピック超伝導体では、巨大渦糸状態(GVS)、多重渦糸状態(MVS)という新しい渦糸状態が理論的に予言されてきた。

MSTJ法によって、はじめて巨大渦糸状態の実験的証拠を得た。渦糸配置の対称性を考慮

2種類の相転移を観測した(渦度L固定)MVS-GVS 転移(2次転移)欠陥に起因するMVS-MVS 転移(1次転移)

A. Kanda et al. PRL 93 257002 (2004)

神田他、「固体物理」6月号(2005)

原稿が欲しい人は、神田までメールをください。

Comparison of current symmetry is less powerful for squares!

GVS

L = 4 MVS

L = 5 MVS L = 6 MVS

L = 3 MVS

Alternative method to distinguish GVS from MVS

Temperature dependence of the vortex expulsion fields

0

0.01

0.02

0.03

0.04

0.05

0.01 0.014 0.018 0.022 0.026

V(m

V)

B(T)

T=0.1K  0.15K

0.2K0.25K0.3K0.4K0.5K 

0

0.01

0.02

0.03

0.04

0.05

0.01 0.014 0.018 0.022 0.026

V(m

V)

B(T)

L=8

10

1211

increasing B decreasing B

boundary: L =11

How to distinguish GVS from MVS

GVS

MVS

Radial dependence of current densityscreening current

(distance from the center)

In MVSs, the screening current is almost temperature independent, leading to temperature-independent transition fields.

B. J. Baelus, A. Kanda, F. M. Peeters, Y. Ootuka and K. Kadowaki,Phys. Rev. B 71 140502(R) (2005).

Can the criterion be applied to squares?

increasing B0.75 (µm)2

decreasing B

0.10 K to 1.05 K

Two behaviors in decreasing B

Application of the criterion to squares(Theory) Baelus (May, 2005)

MVS

GVSL=8, 0.4K

Experimental results for increasing B

Vortex penetration fields change uniformly as a function of temperature.

Experimental results for decreasing B

Vortex expulsion fields show two kinds of behavior.The boundary Lc increases with square size, showing stabilization of MVS in larger squares.

Lc = 2

Lc = 4Lc = 5 Lc = 6

Stability of the vortex states

L = 2

L = 3

L = 4

Theoretically, vortex configuration corresponding to the sample shape is stable.

Evaluation of the stability

The stability of the multivortex states can be evaluated by the width of the stability region, ∆H, over which the L state is stable.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

H0/Hc2

65

4

3

2

1

L = 0

R = 4.0ξ

F/F 0

)2( =∆ LH

0 1 2 3 4 5 6

0.4

0.5

0.6

∆H/H

c2

L

Shape dependence of the stability (experiment)

H

triangle

square

まとめ

メゾスコピック超伝導体の特殊な渦糸状態を、新しい実験方法で研究

メゾスコピック超伝導体の基本的な性質がだんだんと明らかになってきた。

2種類の渦糸状態がある。(MVSとGVS)渦糸状態間の転移: MVS-GVS(2次転移)、MVS-MVS(1次転移)渦糸状態間転移磁場(磁場下降時)から、MVSかGVSかを判断できる。

試料サイズが大きくなるほど、MVSが安定化することを確認。試料形状が、渦糸状態の安定性に影響する。

Collaborators

Natsumi Shimizu, Kumiko Tadano (Tsukuba)Ben Baelus, Francois Peeters (Antwerp)Kazuo Kadowaki, Youiti Ootuka (Tsukuba)