and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky,...

Post on 21-Aug-2020

4 views 0 download

Transcript of and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky,...

Affecting Physicochemical

and Physical Properties

of Surfaces

by

Surface Patterning

Wetting on patterned surfaces

Peltierelement

T > Tdew

Peltierelement

T < Tdew

wettableNon-wettable

Wetting

Liquids on homogeneous surfaces

g

γSV - (γSL + γL cos(Θ))

Θ

Youngs Equation

Laplace pressure

Pinside – Poutside = 2 γ /RR

Liquid morphologies on striped surfaces

Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9, 105 - 115 (2001)

Liquid morphologies on patterned surfaces

Liquids on µ-heterogeneous surfaces

Liquids on µ-heterogeneous surfacest=0 min.

t=20 min.

Hexadecane(+ oil soluble component)

Crystallization of hexadecane droplets

Liquids on µ-heterogeneous surfaces

20 µm

2 µm

0.2 µm

oil

Quantum dots in w/o emulsion

Liquids on µ-heterogeneous surfaces

Capillary bridges as structural motifs

Capillary bridges as complex shaped liquid / liquid interfaces

Dewetting

Water assisted dewetting

H.-G. Braun, E. Meyer, Thin Solid Films 345, 222 (1999)

Micropatterned lipid bilayers

P. Theato, R. Zentel, H.-G. Braun Polymer Preprints, Boston MeetingSept. 2002

Lipopolymer

µ-Fluid CP Water condensation

Dip-coating in Polystyrene

Film rupture during dewetting on homogeneous surfaces

Film formation by controlled dewetting on micropatterned surfaces

E. Meyer, H.-G. Braun, Macromol. Mater. Eng. 276/277, 44 (2000)

Materials and methods

PEO:Linear flexible polymer chain (72 helix)

Mw : 10000 / 6000 / 2000

Takahashi, TadokoroMacromolecules 1973 6 672

DiffusiveGrowth

Film formation by controlled dewetting on micropatterned surfaces

PEO on micropatterned 11-Mercaptoundecanoic acid chemisorbed on gold and structured by E-beam lithography

Hydrophobic motif (E-beam lithographyof self-assembledThiol)

amorphous

crystalline

Controlled nucleation of metastable ultrathin PEO films

Amorphous PEO layer crystallized on request by AFM contact

Diffusion controlled growth in confined layers

DLA type growth of PEO layers under different undercooling

• Scratches• Steps• Rims

Heterogeneous nucleation sites

Morphology variation by temperature

20° 31°

38°33°

J.-U. Sommer, G. Reiter LNP 606 , Polymer Crystallization, p.164Springer 2003

Morphological characteristics

Molecular mechanism

Diffusionalprocess

Lamellathickeningprocess(T dependent)

PEO surface immobilisation by electrons

H2O

Amino terminated PEO lamella

Lipid bilayers and their transitions

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Mesophases of amphiphilic molecules

Mesophases of amphiphilic molecules

HRTEM XRayScattering

Structural characterisation of mesophases by

Polymerisable diacetylenes in vesicles / liposomes / layers

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

Topochemical Polymerisation of polydiacetylenes

G. Wegner

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

J.M. Kim et. Al. , Adv. Mat. 15, 2003, 1118

Change in colour due to interaction of polyacrylic acid with blue ( B) vesicles

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Planar conformation of polyconjugated polymer backbone in blue polydiacetylenes

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Stress induced transformations of polydiacetylene molecules ( AFM , SNOM)

R. Jelinek, JACS 123, 2001, 417

Polydiacetylenes as molecular stress sensors

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks by electroporation, tether formation and ‚extrusion‘

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

O. Orwar, Langmuir 20, 2004, 5637

3-d Liposome networks attached to SU-8 Resist

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

O. Orwar, PNAS 101, 2004, 7949

Knots in nanofluidic vesicle networks

Brochard-Wyart, Langmuir 19, 2003, 575

Brochard-Wyart, Langmuir 19, 2003, 575

Seifert et. Al. PRL, 2004, 208101

Maeda, BBA 1564, 2002, 165

O. Orwar, Anal. Chem. 75, 2003, 2529

O. Orwar, Langmuir 100, 2003, 3904

Formation of vesicle networks on microstructured surfaces

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

Generating flow between vesicle networks by changing their shape

O. Orwar, Anal. Chem. 75, 2003, 2529

Diffusion through nanochannels

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

The concept of vesicle nanofluidic networks

SG Boxer , Biophysical Journal , 2002, 83, 3372

Formation of lipid double layer from vesicles

SG Boxer , Langmuir , 2001, 17, 3400

Mobile microstructured membranes

SG Boxer , Accounts Chemical Research , 2002, 35, 149

Field induced diffusion of lipids

SG Boxer , Current Opinion Chemical Biology , 2000, 704

Mobile microstructured membranes

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002)

Physical effects of small volumes

Laminar and turbulent flow

Parabolic flow profile

Physical effects of small volumesFrom turbulent to laminar flow

L

100 nm < L < 100 µm

Aqueous solutionc0, c1

Stationary flow boundary between flowing miscible liquids (water)Concentration gradient c0, c1 causes Mixing through diffusion

across the boundary

Physical effects of small volumesIncrease in specific surface area with decreasing volume

R V = 4/3 π R3

S = 4 π R2

Sspecific = S/V = 3 / R

Surface interactions and forces become dominating in small dimensions

Geometrical features of microfluidic systems

Flow induced generation of microemulsion droplets

Flow induced generation of microemulsion droplets

Rayleigh instability of cylindrical shaped liquid structures

Flow induced generation of microemulsion droplets

Monodisperse Emulsion Generation via Drop Break Off ina Coflowing StreamP. B. Umbanhowar, V. Prasad, D. A. WeitzLangmuir 16 , 347 (2000)

Flow induced encapsulation of cells

Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu

Anal. Chem. 2005, 77, 1539-1544

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡Anal. Chem.2005, 77,2795-2801

Cell encapsulatioon in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, andDaniel T. Chiu*Anal. Chem.2005, 77,1539-1544

24/01/11 80

Structural basics of proteins

24/01/11 81

Structural basics of proteins

Ramchandran energy mapTorsionangles in peptide chain

24/01/11 82

Structural basics of proteins

24/01/11 83

Structural basics of proteins

24/01/11 84

Structural basics of proteins

24/01/11 85

Structural basics of proteins

24/01/11 86

Structural basics of proteins

24/01/11 87

Structure characterization of aqueous dispersednanostructures by TEM

Liposom Virus Protein

24/01/11 88

Structure characterization of aqueous dispersednanostructures by TEM

Basic idea:

Preserving the structure of soft objects in an aqueous environment for ultrastructure investigations in a UHV Environment.

Cryo Electron Microscopy

20 nm to 100 nmthickness Water Ice

Amorphous ice ( T < -120 deg. C)

24/01/11 89

Structure characterization of aqueous dispersednanostructures by TEM

Rapid freezing with a simple freeze punger

Cryo Electron Microscopy

Vc > 10 4 K/s (cooling rate)

24/01/11 90

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated specimen preparation

24/01/11 91

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated specimen

D. Andelmann , Physics Dept. Tel Aviv University

Multilamella Vesicles

24/01/11 92

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated speciman

Viruses

24/01/11 93

High resolution imaging of proteins

Van Heel Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369

24/01/11 94

High resolution imaging of proteins

24/01/11 95

High resolution imaging of proteins

24/01/11 96

Major technological developments

18 th and 19 th century

Steam engines

Materials: Metals

Steel

24/01/11 97

Major technological developments

20 th century

Electrical motors / generators

Microchips

Materials: Metals

Silicon , Copper

24/01/11 98

Rotary motion produced by F1 ATP‘ase

Protein dimers α,β are assembled to a hexagonal complexstator of the motor unit

A single protein γ is located in the center of the hexagonal complexrotor of the motor unit

24/01/11 99

Rotary motion produced by F1 ATP‘ase

The conformation of β protein is changed by hydrolysis of ATP.The conformational change affects the γ protein resulting in a 120 degree rotation

Optical tweezers

24/01/11 101

Rotary motion produced by F1 ATP‘ase

Stepwise motion has been demonstrated by fluorescence microscopy

24/01/11 102

Rotary motion produced by F1 ATP‘ase

Mechanical properties have been measured on a molecular scale

24/01/11 103

Integration of single molecular motors into man-made microstructures

Montemagno et. al., Science 290 (2000) 155

24/01/11 104

Integration of single molecular motors into man-made microstructures

Rotation of F1 ATP‘ase motors attached to micromachined structureshas been demonstrated

24/01/11 105

Translatory motion produced by Kinesin

or the „molecular railway system“

Molecular tracks made of microtubuli

Molecular motors made of Kinesin

Carriers made from vesicles

24/01/11 106

Translatory motion produced by Kinesin

Molecular tracks are made of microtubuliA. Desai,T.J. Mitchison, Ann. Rev. Cell Dev. Biol.13 (1997 ) 83

24/01/11 107

Translatory motion produced by Kinesin

Polymerisation results in the reversible assembly of protein units

A. Desai,T.J. Mitchison, Ann. Rev. Cell Dev. Biol.13 (1997 ) 83

24/01/11 108

Translatory motion produced by Kinesin

The periodic arrangement of the α,β Tubulin molecules with 8 nm spacing favours a binding of the motor protein Kinesin. Kinesin can reversibly bind to adjacent Tubulin groups finally resulting in a translatory movement. W.O. Hancock, J. Howard, PNAS 96 (1999) 13147L. Romberg, D.W. Pierce, R.D. Vale, J. Cell Biology 140 (1998 ) 1407

Optical multitweezers

Optical tweezers for multiple particlemanipulation

Nano transporters

Jia, L. L. and Moorjani, S. G. and Jackson, T. N. and Hancock, W. O.

Biomedical Microdevices 6, 67 (2004)

Nano transporters

Jia, L. L. and Moorjani, S. G. and Jackson, T. N. and Hancock, W. O.

Biomedical Microdevices 6, 67 (2004)

Biomimetics – learning from Biosystems

1. Pearls and Mussels

1. Magnetosomes

1. Silk

1. Diatomes

1. Lotus effect

1. Gecko

Structural properties

Functional properties

Biomimetic calcificationNacre and pearls

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

J. Aizenberg et. Al., Science 299 (2003) 1205

Biomimetic calcification

Silk

Tensile strength : 25.000 kg/cm² ( 5 times steel)

Silk

Glcyin 37 % , Alanin 18 % , Polar Aminoacids 26 %

24/01/11 126

Structural basics of proteins

24/01/11 127

Structural basics of proteins

Ramchandran energy mapTorsionangles in peptide chain

24/01/11 128

Structural basics of proteins

24/01/11 129

Structural basics of proteins

Silk

Silk

J.D. van Beek, S. Hess, F. Vollrath & B.H. MeierPNAS 99 (2002) 10266

--------QGAGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGGQG___ --AGQGAGAAAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQ-AGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQ--- GGLGGQG------AGQGAGASAAAA-GGAGQGGYGGLGSQGAGR---GGEGAGAAAAAA-GGAGQGGYGGLGGQG------------- _----AGQGGYGGLGSQGAGRGGLGGQGAGAAAA---GGAGQ---GGLGGQG------AGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAVAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQRGYGGLGNQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAA--GGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-VGAGQEGIR--- GQG

M. Xu, RV Lewis, PNAS, 87 (1990) 7120

Silk

Molecular nanosprings in spider capture-silk threadsNATHAN BECKER1, EMIN OROUDJEV1, STEPHANIE MUTZ1, JASON P. CLEVELAND2,PAUL K. HANSMA1, CHERYL Y. HAYASHI3, DMITRII E. MAKAROV4 AND HELEN G. HANSMANature Materials 2 (2003) 278

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Magnetic Particles

Crystallographic structure of Magnetite (Fe3O4)

Magnetic Particles

Electron spin configuration in Magnetite

Magnetic Order in Solid State

Ferromagnetic: Parallel spin order

Antiferromagnetic: Antiparallel spin order

Paramagnetic: No spin order

Superparamagnetic: Temporary spin orientation In external magnetic field – nanosized effect

Magnetization in ferro- andSuperparamagnetic systems

Neutron Scattering

Neutron Scattering Powder Diffractometer

Neutron Scattering

Magnetosome Formation

Bazylinski, D., Frankel, R., 2000. Magnetic iron oxide and iron sulfide minerals within microorganisms.In: Baeuerlein, E. (Ed.), Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, Germany, pp. 25–46.

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Magnetosome Formation

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Dirk SchülerJ. Molec. Microbiol. Biotechnol. (1999) 1(1): 79-86.

Magnetosome Formation

Arakaki, A., Webb, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003).

Magnetite formation in presence of the protein mms6 results in similar size distribution as in the cell

Magnetosome Application

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Magnetosome Stabilisation

aa) With MM protein coatingMM – Magnetosome Membrane

b) Without MM protein coating

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Magnetosome Functionalization

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

DNA structure

DNA structure

Replicating DNA by Polymerase Chain Reaction

Cloning by plasmids

Biomimetic approachesThe gecko – spiderman

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – structural entities

Autumn, K. MRS Bulletin 32, 473 (2007)

C: SetaeD: Single Setae - individual keratin fibrills (Spatula)

Biomimetic approachesThe gecko – structural entities on various sizes

Gao,H. Mechanics of Materials 37, 275 (2005)

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

F = 2/3 π R γ Van der Waals interaction

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

Biomimetic approachesThe gecko – adhesion properties of materials

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – scaling of stresses

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – theoretical approaches

Reibung

Saugnäpfe

Kapillarkräfte

Mikroverzahnung

Elektrostatik

Van der Waals

Biomimetic approachesVan der Waals Kräfte

Tritt zwischen allen Materialien auf

Bewirkt durch Elektronenfluktuation

Kurzreichweitig ~ 1/ D3

Stark abhängig von der Kontaktfläche

Biomimetic approachesVan der Waals Forces

Hamaker constant:

Add up all the interactions Between the ‚red‘ atoms

Interaction free energy between two cubes of edge length L And separation distance l

l<< L (-A/12 π l2) L2 (per pair)

l

L

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 496 (2007)

F‘ = n1/2 F

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Biomimetic approachesThe gecko – biomimetic materials

Geim, AK Nature Materials 2, 461 (2003)

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Biomimetic approachesThe gecko - some structural aspects of reversible

Creton, C. & Gorb, S. MRS Bulletin 32, 466 (2007)

Biomimetic approachesThe gecko – capillary effects (secondary)

Huber G., PNAS 102, 16293 (2005)

Biomimetic approachesThe gecko – technological applications

Daltorio, KA. MRS Bulletin 32, 504 (2007)

Hydrophobic surface of collemboles (Springschwanz)

Hydrophobic surface of collemboles (Springschwanz)

Biomimetic approachesUltrahydrophobic surfaces

Quere, D. , Nature 1, 14 (2002)

Influence of surface textureby roughness a,cWenzel case

Influence of surface textureby air entrapment b

Cassie – Baxter case

Biomimetic approachesUltrahydrophobic surfaces

Wenzel casecos (θr) = r cos(θs)

Contact angle on rough surface

Contact angle on smooth surface

r = A / A‘

A = true surface areaA‘= apparent surface area

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic approachesUltrahydrophobic surfaces

Cassie-Baxter cos (θr) = f1 cos(θs) – f2

f1 = surface fraction mat.f2 = surface fraction air

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic approachesUltrahydrophobic surfaces

Shibuichi, S. , J. Phys. Chem. 100, 19512 (1996)

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Aluminiumoxide surface hydrophobization by topography

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Surface hydrophobization by chemistry

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic ultrahydrophobic surface of Indium oxide

Y. Li j. Coll. Int. Sci. 314, 615-620 (2007)

Structural elements of FF-Dipeptide

1,2 nm

Dipeptide

Structural transformations of FF Dipeptide

FF Dipetide annealed at 155 deg. C / dry cond.

FF Dipetide annealed at 155 deg. C / high humidity

Ultrahydrophobic self-assembled FF

Ultrahydrophobic self-assembled FF

Y.Su J. Mater. Chem., 2010, 20, 6734–6740

ΘOil 143 ° ΘWater 143 °

Ultrahydrophobic self-assembled FF

J.S. Lee Soft Matter, 2009, 5, 2717–2720

Ultrahydrophobic honeycomb films

W. Dong Langmuir 2009, 25, 173-178

Self organization of µ-/ mesocaled objectsSelf-assembling machines

S. Griffith Nature 237, 636 (2005)

Self organization of µ-/ mesocaled objectsSelf-assembling machines

R. Gross IEEE Transactions on robotics 237, 1115-1130 (2006)

Self organization of µ-/ mesocaled objectsSelf-assembling microparts

W. Zheng and H.O. Jacobs Adv. Mater. 2006, 18, 1387–1392

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

J. Fang , KF Böhringer J. Micromech. Microeng. (2006) 721–730

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

PolyStyreneparticles

Goldparticles

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Self organization of µ-/ mesocaled objectsDepletion induced assembly

Hernadez , Mason TG , J.Phys. Chem. C (2007) 4477

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)