and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky,...

213
Affecting Physicochemical and Physical Properties of Surfaces by Surface Patterning

Transcript of and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky,...

Page 1: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Affecting Physicochemical

and Physical Properties

of Surfaces

by

Surface Patterning

Page 2: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Wetting on patterned surfaces

Peltierelement

T > Tdew

Peltierelement

T < Tdew

wettableNon-wettable

Page 3: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Wetting

Page 4: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquids on homogeneous surfaces

g

γSV - (γSL + γL cos(Θ))

Θ

Youngs Equation

Laplace pressure

Pinside – Poutside = 2 γ /RR

Page 5: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquid morphologies on striped surfaces

Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9, 105 - 115 (2001)

Page 6: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquid morphologies on patterned surfaces

Page 7: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquids on µ-heterogeneous surfaces

Page 8: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquids on µ-heterogeneous surfacest=0 min.

t=20 min.

Hexadecane(+ oil soluble component)

Page 9: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Crystallization of hexadecane droplets

Page 10: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquids on µ-heterogeneous surfaces

20 µm

2 µm

0.2 µm

oil

Quantum dots in w/o emulsion

Page 11: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Liquids on µ-heterogeneous surfaces

Page 12: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Capillary bridges as structural motifs

Page 13: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Capillary bridges as complex shaped liquid / liquid interfaces

Page 14: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Dewetting

Page 15: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Water assisted dewetting

H.-G. Braun, E. Meyer, Thin Solid Films 345, 222 (1999)

Page 16: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Micropatterned lipid bilayers

P. Theato, R. Zentel, H.-G. Braun Polymer Preprints, Boston MeetingSept. 2002

Lipopolymer

µ-Fluid CP Water condensation

Dip-coating in Polystyrene

Page 17: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Film rupture during dewetting on homogeneous surfaces

Page 18: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Film formation by controlled dewetting on micropatterned surfaces

E. Meyer, H.-G. Braun, Macromol. Mater. Eng. 276/277, 44 (2000)

Page 19: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Materials and methods

PEO:Linear flexible polymer chain (72 helix)

Mw : 10000 / 6000 / 2000

Takahashi, TadokoroMacromolecules 1973 6 672

Page 20: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

DiffusiveGrowth

Page 21: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Film formation by controlled dewetting on micropatterned surfaces

PEO on micropatterned 11-Mercaptoundecanoic acid chemisorbed on gold and structured by E-beam lithography

Hydrophobic motif (E-beam lithographyof self-assembledThiol)

amorphous

crystalline

Page 22: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Controlled nucleation of metastable ultrathin PEO films

Amorphous PEO layer crystallized on request by AFM contact

Page 23: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Diffusion controlled growth in confined layers

DLA type growth of PEO layers under different undercooling

Page 24: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

• Scratches• Steps• Rims

Heterogeneous nucleation sites

Page 25: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Morphology variation by temperature

20° 31°

38°33°

Page 26: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J.-U. Sommer, G. Reiter LNP 606 , Polymer Crystallization, p.164Springer 2003

Morphological characteristics

Page 27: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Molecular mechanism

Diffusionalprocess

Lamellathickeningprocess(T dependent)

Page 28: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

PEO surface immobilisation by electrons

H2O

Page 29: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Amino terminated PEO lamella

Page 30: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Lipid bilayers and their transitions

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Page 31: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Page 32: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Mesophases of amphiphilic molecules

Page 33: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Mesophases of amphiphilic molecules

HRTEM XRayScattering

Structural characterisation of mesophases by

Page 34: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Polymerisable diacetylenes in vesicles / liposomes / layers

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

Page 35: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Topochemical Polymerisation of polydiacetylenes

G. Wegner

Page 36: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

Page 37: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J.M. Kim et. Al. , Adv. Mat. 15, 2003, 1118

Change in colour due to interaction of polyacrylic acid with blue ( B) vesicles

Page 38: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Planar conformation of polyconjugated polymer backbone in blue polydiacetylenes

Page 39: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Stress induced transformations of polydiacetylene molecules ( AFM , SNOM)

Page 40: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

R. Jelinek, JACS 123, 2001, 417

Polydiacetylenes as molecular stress sensors

Page 41: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks by electroporation, tether formation and ‚extrusion‘

Page 42: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

Page 43: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

Page 44: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

Page 45: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 20, 2004, 5637

3-d Liposome networks attached to SU-8 Resist

Page 46: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

Page 47: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, PNAS 101, 2004, 7949

Knots in nanofluidic vesicle networks

Page 48: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Brochard-Wyart, Langmuir 19, 2003, 575

Page 49: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Brochard-Wyart, Langmuir 19, 2003, 575

Page 50: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Seifert et. Al. PRL, 2004, 208101

Page 51: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Maeda, BBA 1564, 2002, 165

Page 52: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Anal. Chem. 75, 2003, 2529

Page 53: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Langmuir 100, 2003, 3904

Formation of vesicle networks on microstructured surfaces

Page 54: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

Generating flow between vesicle networks by changing their shape

Page 55: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

O. Orwar, Anal. Chem. 75, 2003, 2529

Diffusion through nanochannels

Page 56: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

The concept of vesicle nanofluidic networks

Page 57: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Biophysical Journal , 2002, 83, 3372

Formation of lipid double layer from vesicles

Page 58: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Langmuir , 2001, 17, 3400

Mobile microstructured membranes

Page 59: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Accounts Chemical Research , 2002, 35, 149

Field induced diffusion of lipids

Page 60: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Current Opinion Chemical Biology , 2000, 704

Mobile microstructured membranes

Page 61: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

Page 62: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

Page 63: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Dynamics of nanoobjects Motion in ratchets

Page 64: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Dynamics of nanoobjects Motion in ratchets

Page 65: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002)

Page 66: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Physical effects of small volumes

Laminar and turbulent flow

Parabolic flow profile

Page 67: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Physical effects of small volumesFrom turbulent to laminar flow

L

100 nm < L < 100 µm

Aqueous solutionc0, c1

Stationary flow boundary between flowing miscible liquids (water)Concentration gradient c0, c1 causes Mixing through diffusion

across the boundary

Page 68: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Physical effects of small volumesIncrease in specific surface area with decreasing volume

R V = 4/3 π R3

S = 4 π R2

Sspecific = S/V = 3 / R

Surface interactions and forces become dominating in small dimensions

Page 69: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Geometrical features of microfluidic systems

Page 70: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of microemulsion droplets

Page 71: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of microemulsion droplets

Page 72: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Rayleigh instability of cylindrical shaped liquid structures

Page 73: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of microemulsion droplets

Monodisperse Emulsion Generation via Drop Break Off ina Coflowing StreamP. B. Umbanhowar, V. Prasad, D. A. WeitzLangmuir 16 , 347 (2000)

Page 74: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced encapsulation of cells

Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu

Anal. Chem. 2005, 77, 1539-1544

Page 75: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Page 76: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Page 77: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Page 78: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡Anal. Chem.2005, 77,2795-2801

Page 79: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Cell encapsulatioon in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, andDaniel T. Chiu*Anal. Chem.2005, 77,1539-1544

Page 80: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 80

Structural basics of proteins

Page 81: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 81

Structural basics of proteins

Ramchandran energy mapTorsionangles in peptide chain

Page 82: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 82

Structural basics of proteins

Page 83: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 83

Structural basics of proteins

Page 84: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 84

Structural basics of proteins

Page 85: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 85

Structural basics of proteins

Page 86: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 86

Structural basics of proteins

Page 87: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 87

Structure characterization of aqueous dispersednanostructures by TEM

Liposom Virus Protein

Page 88: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 88

Structure characterization of aqueous dispersednanostructures by TEM

Basic idea:

Preserving the structure of soft objects in an aqueous environment for ultrastructure investigations in a UHV Environment.

Cryo Electron Microscopy

20 nm to 100 nmthickness Water Ice

Amorphous ice ( T < -120 deg. C)

Page 89: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 89

Structure characterization of aqueous dispersednanostructures by TEM

Rapid freezing with a simple freeze punger

Cryo Electron Microscopy

Vc > 10 4 K/s (cooling rate)

Page 90: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 90

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated specimen preparation

Page 91: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 91

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated specimen

D. Andelmann , Physics Dept. Tel Aviv University

Multilamella Vesicles

Page 92: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 92

Structure characterization of aqueous dispersednanostructures by TEM

Frozen hydrated speciman

Viruses

Page 93: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 93

High resolution imaging of proteins

Van Heel Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369

Page 94: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 94

High resolution imaging of proteins

Page 95: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 95

High resolution imaging of proteins

Page 96: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 96

Major technological developments

18 th and 19 th century

Steam engines

Materials: Metals

Steel

Page 97: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 97

Major technological developments

20 th century

Electrical motors / generators

Microchips

Materials: Metals

Silicon , Copper

Page 98: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 98

Rotary motion produced by F1 ATP‘ase

Protein dimers α,β are assembled to a hexagonal complexstator of the motor unit

A single protein γ is located in the center of the hexagonal complexrotor of the motor unit

Page 99: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 99

Rotary motion produced by F1 ATP‘ase

The conformation of β protein is changed by hydrolysis of ATP.The conformational change affects the γ protein resulting in a 120 degree rotation

Page 100: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Optical tweezers

Page 101: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 101

Rotary motion produced by F1 ATP‘ase

Stepwise motion has been demonstrated by fluorescence microscopy

Page 102: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 102

Rotary motion produced by F1 ATP‘ase

Mechanical properties have been measured on a molecular scale

Page 103: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 103

Integration of single molecular motors into man-made microstructures

Montemagno et. al., Science 290 (2000) 155

Page 104: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 104

Integration of single molecular motors into man-made microstructures

Rotation of F1 ATP‘ase motors attached to micromachined structureshas been demonstrated

Page 105: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 105

Translatory motion produced by Kinesin

or the „molecular railway system“

Molecular tracks made of microtubuli

Molecular motors made of Kinesin

Carriers made from vesicles

Page 106: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 106

Translatory motion produced by Kinesin

Molecular tracks are made of microtubuliA. Desai,T.J. Mitchison, Ann. Rev. Cell Dev. Biol.13 (1997 ) 83

Page 107: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 107

Translatory motion produced by Kinesin

Polymerisation results in the reversible assembly of protein units

A. Desai,T.J. Mitchison, Ann. Rev. Cell Dev. Biol.13 (1997 ) 83

Page 108: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 108

Translatory motion produced by Kinesin

The periodic arrangement of the α,β Tubulin molecules with 8 nm spacing favours a binding of the motor protein Kinesin. Kinesin can reversibly bind to adjacent Tubulin groups finally resulting in a translatory movement. W.O. Hancock, J. Howard, PNAS 96 (1999) 13147L. Romberg, D.W. Pierce, R.D. Vale, J. Cell Biology 140 (1998 ) 1407

Page 109: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Optical multitweezers

Page 110: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Optical tweezers for multiple particlemanipulation

Page 111: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Nano transporters

Jia, L. L. and Moorjani, S. G. and Jackson, T. N. and Hancock, W. O.

Biomedical Microdevices 6, 67 (2004)

Page 112: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Nano transporters

Jia, L. L. and Moorjani, S. G. and Jackson, T. N. and Hancock, W. O.

Biomedical Microdevices 6, 67 (2004)

Page 113: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetics – learning from Biosystems

1. Pearls and Mussels

1. Magnetosomes

1. Silk

1. Diatomes

1. Lotus effect

1. Gecko

Structural properties

Functional properties

Page 114: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcificationNacre and pearls

Page 115: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcification

Page 116: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcification

Page 117: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcification

Page 118: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcification

Page 119: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic calcification

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Page 120: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Biomimetic calcification

Page 121: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

Page 122: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

Page 123: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

J. Aizenberg et. Al., Science 299 (2003) 1205

Biomimetic calcification

Page 124: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silk

Tensile strength : 25.000 kg/cm² ( 5 times steel)

Page 125: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silk

Glcyin 37 % , Alanin 18 % , Polar Aminoacids 26 %

Page 126: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 126

Structural basics of proteins

Page 127: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 127

Structural basics of proteins

Ramchandran energy mapTorsionangles in peptide chain

Page 128: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 128

Structural basics of proteins

Page 129: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

24/01/11 129

Structural basics of proteins

Page 130: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silk

Page 131: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silk

J.D. van Beek, S. Hess, F. Vollrath & B.H. MeierPNAS 99 (2002) 10266

--------QGAGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGGQG___ --AGQGAGAAAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQ-AGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQ--- GGLGGQG------AGQGAGASAAAA-GGAGQGGYGGLGSQGAGR---GGEGAGAAAAAA-GGAGQGGYGGLGGQG------------- _----AGQGGYGGLGSQGAGRGGLGGQGAGAAAA---GGAGQ---GGLGGQG------AGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAVAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQRGYGGLGNQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAA--GGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-VGAGQEGIR--- GQG

M. Xu, RV Lewis, PNAS, 87 (1990) 7120

Page 132: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silk

Molecular nanosprings in spider capture-silk threadsNATHAN BECKER1, EMIN OROUDJEV1, STEPHANIE MUTZ1, JASON P. CLEVELAND2,PAUL K. HANSMA1, CHERYL Y. HAYASHI3, DMITRII E. MAKAROV4 AND HELEN G. HANSMANature Materials 2 (2003) 278

Page 133: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Page 134: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Page 135: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetic Particles

Crystallographic structure of Magnetite (Fe3O4)

Page 136: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetic Particles

Electron spin configuration in Magnetite

Page 137: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetic Order in Solid State

Ferromagnetic: Parallel spin order

Antiferromagnetic: Antiparallel spin order

Paramagnetic: No spin order

Superparamagnetic: Temporary spin orientation In external magnetic field – nanosized effect

Page 138: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetization in ferro- andSuperparamagnetic systems

Page 139: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Neutron Scattering

Page 140: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Neutron Scattering Powder Diffractometer

Page 141: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Neutron Scattering

Page 142: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Bazylinski, D., Frankel, R., 2000. Magnetic iron oxide and iron sulfide minerals within microorganisms.In: Baeuerlein, E. (Ed.), Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, Germany, pp. 25–46.

Page 143: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Page 144: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Page 145: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Page 146: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Page 147: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Page 148: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Page 149: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Dirk SchülerJ. Molec. Microbiol. Biotechnol. (1999) 1(1): 79-86.

Page 150: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Formation

Arakaki, A., Webb, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003).

Magnetite formation in presence of the protein mms6 results in similar size distribution as in the cell

Page 151: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Application

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Page 152: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Stabilisation

aa) With MM protein coatingMM – Magnetosome Membrane

b) Without MM protein coating

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Page 153: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetosome Functionalization

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Page 154: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Page 155: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Page 156: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

Page 157: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

Page 158: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

DNA structure

Page 159: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

DNA structure

Page 160: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Replicating DNA by Polymerase Chain Reaction

Page 161: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Cloning by plasmids

Page 162: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – spiderman

Autumn, K. MRS Bulletin 32, 473 (2007)

Page 163: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – structural entities

Autumn, K. MRS Bulletin 32, 473 (2007)

C: SetaeD: Single Setae - individual keratin fibrills (Spatula)

Page 164: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – structural entities on various sizes

Gao,H. Mechanics of Materials 37, 275 (2005)

Page 165: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

F = 2/3 π R γ Van der Waals interaction

Page 166: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

Page 167: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – adhesion properties of materials

Autumn, K. MRS Bulletin 32, 473 (2007)

Page 168: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – scaling of stresses

Autumn, K. MRS Bulletin 32, 473 (2007)

Page 169: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – theoretical approaches

Reibung

Saugnäpfe

Kapillarkräfte

Mikroverzahnung

Elektrostatik

Van der Waals

Page 170: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesVan der Waals Kräfte

Tritt zwischen allen Materialien auf

Bewirkt durch Elektronenfluktuation

Kurzreichweitig ~ 1/ D3

Stark abhängig von der Kontaktfläche

Page 171: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesVan der Waals Forces

Hamaker constant:

Add up all the interactions Between the ‚red‘ atoms

Interaction free energy between two cubes of edge length L And separation distance l

l<< L (-A/12 π l2) L2 (per pair)

l

L

Page 172: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 496 (2007)

F‘ = n1/2 F

Page 173: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Page 174: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – biomimetic materials

Geim, AK Nature Materials 2, 461 (2003)

Page 175: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Page 176: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko - some structural aspects of reversible

Creton, C. & Gorb, S. MRS Bulletin 32, 466 (2007)

Page 177: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – capillary effects (secondary)

Huber G., PNAS 102, 16293 (2005)

Page 178: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesThe gecko – technological applications

Daltorio, KA. MRS Bulletin 32, 504 (2007)

Page 179: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Hydrophobic surface of collemboles (Springschwanz)

Page 180: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Hydrophobic surface of collemboles (Springschwanz)

Page 181: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Quere, D. , Nature 1, 14 (2002)

Influence of surface textureby roughness a,cWenzel case

Influence of surface textureby air entrapment b

Cassie – Baxter case

Page 182: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Wenzel casecos (θr) = r cos(θs)

Contact angle on rough surface

Contact angle on smooth surface

r = A / A‘

A = true surface areaA‘= apparent surface area

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Page 183: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Cassie-Baxter cos (θr) = f1 cos(θs) – f2

f1 = surface fraction mat.f2 = surface fraction air

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Page 184: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Shibuichi, S. , J. Phys. Chem. 100, 19512 (1996)

Page 185: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Aluminiumoxide surface hydrophobization by topography

Page 186: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Surface hydrophobization by chemistry

Page 187: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Page 188: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Biomimetic ultrahydrophobic surface of Indium oxide

Y. Li j. Coll. Int. Sci. 314, 615-620 (2007)

Page 189: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Structural elements of FF-Dipeptide

1,2 nm

Dipeptide

Page 190: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Structural transformations of FF Dipeptide

FF Dipetide annealed at 155 deg. C / dry cond.

FF Dipetide annealed at 155 deg. C / high humidity

Page 191: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Ultrahydrophobic self-assembled FF

Page 192: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Ultrahydrophobic self-assembled FF

Y.Su J. Mater. Chem., 2010, 20, 6734–6740

ΘOil 143 ° ΘWater 143 °

Page 193: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Ultrahydrophobic self-assembled FF

J.S. Lee Soft Matter, 2009, 5, 2717–2720

Page 194: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Ultrahydrophobic honeycomb films

W. Dong Langmuir 2009, 25, 173-178

Page 195: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsSelf-assembling machines

S. Griffith Nature 237, 636 (2005)

Page 196: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsSelf-assembling machines

R. Gross IEEE Transactions on robotics 237, 1115-1130 (2006)

Page 197: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsSelf-assembling microparts

W. Zheng and H.O. Jacobs Adv. Mater. 2006, 18, 1387–1392

Page 198: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

J. Fang , KF Böhringer J. Micromech. Microeng. (2006) 721–730

Page 199: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Page 200: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Page 201: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

PolyStyreneparticles

Goldparticles

Page 202: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Page 203: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsDepletion induced assembly

Hernadez , Mason TG , J.Phys. Chem. C (2007) 4477

Page 204: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Page 205: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Page 206: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Page 207: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Page 208: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Page 209: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Page 210: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Page 211: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Page 212: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)

Page 213: and Physical PropertiesLiquid morphologies on striped surfaces Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9,

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)