Themath.mit.edu/conferences/stanley70/Site/Slides/Steingrimsson.pdf · adjacency in a p ermutation...

Post on 09-May-2020

2 views 0 download

Transcript of Themath.mit.edu/conferences/stanley70/Site/Slides/Steingrimsson.pdf · adjacency in a p ermutation...

The topology of the

permutation pattern poset

Einar Steingrímsson

University of Strath lyde

Work by Jason P. Smith and

joint work with Peter M Namara

and with A. Burstein, V. Jelínek and E. Jelínková

An o urren e of a pattern p in a permutation π is a sub-

sequen e in π whose letters appear in the same order of

size as those in p.

463 is an o urren e of 231 in 416325

1

An o urren e of a pattern p in a permutation π is a sub-

sequen e in π whose letters appear in the same order of

size as those in p.

463 is an o urren e of 231 in 416325

2

An o urren e of a pattern p in a permutation π is a sub-

sequen e in π whose letters appear in the same order of

size as those in p.

463 is an o urren e of 231 in 416325

If π has no o urren e of p then π avoids p.

4173625 avoids 4321

3

An o urren e of a pattern p in a permutation π is a sub-

sequen e in π whose letters appear in the same order of

size as those in p.

463 is an o urren e of 231 in 416325

If π has no o urren e of p then π avoids p.

4173625 avoids 4321

(No de reasing subsequen e of length 4)

4

The set of all permutations forms a poset P

with respe t to pattern ontainment

5

The set of all permutations forms a poset P

with respe t to pattern ontainment

σ 6 τ if σ is a pattern in τ

6

· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The bottom of the poset P

7

· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The bottom of the poset PThe bottom of the poset P

2314 ontains

213 as a pattern

8

· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The interval [12,2314] = {π | 12 6 π 6 2314}

9

· · · 2314 · · ·

123 132 213 231 312 321

12 21

1

The interval [12,2314] = {π | 12 6 π 6 2314}

10

2314

231

3142134224133421

241352315434215 24153 31524421531352435214

352164352146 421635241635342165

3521746

11

The Möbius fun tion of an interval I

• • •

• • •

The Möbius fun tion on I is de�ned by µ(x, x) = 1 and

x6t6y

µ(x, t) = 0 if x < y

12

Computing µ(•, y) on an interval I

• • •

• • •

-1

1

2

0

-1 -1 -1

1

The Möbius fun tion on I is de�ned by µ(x, x) = 1 and

x6t6y

µ(x, t) = 0 if x < y

13

Computing the Möbius fun tion for the pattern poset

A very short prehistory

14

Computing the Möbius fun tion for the pattern poset

A very short prehistory

Wilf (2002): Should be done

15

Computing the Möbius fun tion for the pattern poset

A very short prehistory

Wilf (2002): Should be done

Wilf (2003): A mess. Don't tou h it.

16

Jason Smith (2014)

A des ent in a permutation is a letter followed by a smaller

one

516792348

17

Jason Smith (2014)

A des ent in a permutation is a letter followed by a smaller

one

516792348

18

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

19

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

20

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

21

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

The tail of an adja en y is all but its �rst letter.

22

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

The tail of an adja en y is all but its �rst letter.

23

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

The tail of an adja en y is all but its �rst letter.

An o urren e of a pattern in a permutation π is normal if

the o urren e ontains all the tails of π.

24

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

516792348

The tail of an adja en y is all but its �rst letter.

An o urren e of a pattern in a permutation π is normal if

the o urren e ontains all the tails of π.

The normal o urren es of 3412 in 516792348:

5734 and 6734

25

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

516792348

The tail of an adja en y is all but its �rst letter.

An o urren e of a pattern in a permutation π is normal if

the o urren e ontains all the tails of π.

The normal o urren es of 3412 in 516792348:

5734 and 6734

26

Jason Smith (2014)

An adja en y in a permutation is a maximal in reasing se-

quen e of letters adja ent in position and value:

516792348

516792348

The tail of an adja en y is all but its �rst letter.

An o urren e of a pattern in a permutation π is normal if

the o urren e ontains all the tails of π.

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .27

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .28

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

29

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

30

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

That is, the order omplex of [σ, τ ] is shellable.

31

P

a

b

d

e

f

Order omplex of P

−→ •

a

b

d

e

f

32

P

a

b

d

e

f

Order omplex of P

−→ •

a

b

d

e

f

33

P

a

b

d

e

f

Order omplex of P

−→ •

a

b

d

e

f

−→•

• •

34

P

−→ •

a

b

d

e

f

Order omplex of P

−→•

• •

1

-1

10

-1

00

01

-1

1

-1

-1

1

-1

1

35

P

−→ •

a

b

d

e

f

Order omplex of P

−→•

• •

1

-1

10

-1

00

01

-1

1

-1

-1

1

-1

1

Contra tible

A sphere

36

P

−→ •

a

b

d

e

f

Order omplex of P

−→•

• •

1

-1

10

-1

00

01

-1

1

-1

-1

1

-1

1

Contra tible

A sphere

The Möbius fun tion equals the redu ed Euler hara teristi

37

•Shellable omplex

Nonshellable omplex

38

•Shellable omplex

Nonshellable omplex

39

•Shellable omplex

Nonshellable omplex

X

40

•Shellable omplex

Nonshellable omplex

X

41

•Shellable omplex

Nonshellable omplex

• µ(σ,τ ) equals redu ed Euler hara teristi of ∆((σ,τ ))

A shellable omplex is homotopi ally a wedge of spheres.

Its redu ed Euler hara teristi is the number of spheres.

It has nontrivial homology at most in the top dimension.

42

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

Proof: Bije t to subword order and use Björner's results

(1988).

43

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onse utive numbers in de reasing or in reasing order.

Then µ(1,π) = 0.

44

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onse utive numbers in de reasing or in reasing order.

Then µ(1,π) = 0.

µ(1, 71654823) = 0

45

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

Theorem: Let π be any permutation with a segment of

three onse utive numbers in de reasing or in reasing order.

Then µ(1,π) = 0.

In fa t, the interval [1,π] is ontra tible.

46

Jason Smith (2014)

Theorem: If σ and τ have the same number of des ents,

then

µ(σ, τ) = (−1)|τ |−|σ|N(σ, τ),

where N(σ, τ) is the number of normal o urren es of σ in τ .

Therefore,

|µ(σ, τ)| 6 σ(τ),

where σ(τ) is the number of o urren es of σ in τ .

And, the interval [σ, τ ] is shellable.

There are results/ onje tures analogous to the above for

the layered and separable permutations.

47

Sagan-Vatter (2005): Möbius fun tion for layered permutations

48

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

49

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

50

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

A layered permutation is a on atenation of de reasing se-

quen es, ea h smaller than the next.

51

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

A layered permutation is a on atenation of de reasing se-

quen es, ea h smaller than the next.

52

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

53

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

(Any subsequen e of a layered permutation is layered)

54

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

An e�e tive formula, but too long to �t inside these margins . . .

55

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

An e�e tive formula, but too long to �t inside these margins . . .

(Similar to permutations with �xed number of des ents)

56

Sagan-Vatter (2005): Möbius fun tion for layered permutations

3 2 1 5 4 6 8 7

A spe ial ase of the separable permutations.

57

4 2 3 5 1 7 8 6

58

4 2 3 5 1 7 8 6

59

4 2 3 5 1 7 8 6

A de omposable permutation

is a dire t sum

42351786 = 42351⊕ 231

60

4 2 3 5 1 7 8 6

A de omposable permutation

is a dire t sum

42351786 = 42351⊕ 231A skew-de omposable

permutation is a skew sum

76841325 = 213⊖ 41325

61

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

62

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

63

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

64

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

65

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

66

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

67

4 2 3 5 1 7 8 6

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

68

4 2 3 5 1 7 8 6

•Separable

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

69

4 2 3 5 1 7 8 6

•Separable

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

De omposes by skew/dire t

sums into singletons

70

4 2 3 5 1 7 8 6

•Separable

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

De omposes by skew/dire t

sums into singletons

A permutation is separable if

and only if it avoids the pat-

terns 2413 and 3142.

71

4 2 3 5 1 7 8 6

•Separable

A permutation is separable if

it an be generated from 1 by

dire t sums and skew sums.

De omposes by skew/dire t

sums into singletons

A permutation is separable if

and only if it avoids the pat-

terns 2413 and 3142.

2 4 1 3

Not separable

72

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

73

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

74

Nan Li −→ L

Bru e Sagan −→ S

75

Nan Li −→ L

Bru e Sagan −→ S

E. Babson, A. Björner, L, V. Welker, J. Shareshian

76

Nan Li −→ L

Bru e Sagan −→ S

77

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

78

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

Mi helle Wa hs −→ MW

79

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

Mi helle Wa hs −→ MW

Peter M Namara −→ M N

80

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

Mi helle Wa hs −→ MW

Peter M Namara −→ M N

Abbreviating your last name to a single letter implies every-

body should remember your name.

81

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

Mi helle Wa hs −→ MW

Peter M Namara −→ M N

Abbreviating your last name to a single letter implies every-

body should remember your name.

Let's put an end to this immodesty!

82

Nan Li −→ L

Bru e Sagan −→ S

Lou Billera −→ B

Mi helle Wa hs −→ MW

Peter M Namara −→ M N

Abbreviating your last name to a single letter implies every-

body should remember your name.

Let's put an end to this immodesty!

(Unless your name is Central Shipyard, in whi h ase you

may be forgiven)

83

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

84

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

(This omputes µ(σ,τ ) in polynomial time)

85

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

86

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

(A generalization of a onje ture of Tenner and Steingríms-

son)

87

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

µ(135 . . . (2k-1) (2k) . . .42,135 . . . (2n-1) (2n) . . .42) =(n+k−1n−k

)

88

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

µ(1342, 13578642) =(8/2+4/2−18/2−4/2

)=

(52

)

89

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

Corollary: If τ is separable, then µ(1, τ) ∈ {0,1,−1}.

90

Burstein, Jelínek, Jelínková, Steingrímsson:

Theorem: If σ and τ are separable permutations, then

µ(σ,τ ) =∑

X∈OP

(�1)parity(X)

where the sum is over unpaired o urren es of σ in τ .

Corollary: If σ and τ are separable then

|µ(σ,τ )| 6 σ(τ )

where σ(τ ) is the number of o urren es of σ in τ .

Corollary: If τ is separable, then µ(1, τ) ∈ {0,1,−1}.

Neither orollary true in general

91

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

92

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

93

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

94

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

...

• 4

• 3

• 2

• 1

1343 6P 113414

95

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

...

• 4

• 3

• 2

• 1

1343 6P 113414 (3 <P 4)

96

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

...

• 4

• 3

• 2

• 1

1343 6P 113414

Fixed-des

Layered

97

Layered intervals and �xed-des intervals are isomorphi to

two extremes in the Generalized subword order (determined

by a poset P) of Sagan and Vatter.

P anti hain:

1 2 3 4 · · ·• • • • · · ·

1344 6P 113414

1343 66P 113414

P hain:

...

• 4

• 3

• 2

• 1

1343 6P 113414

Fixed-des

Layered

Is there a family of intervals of permutations interpolating

between these two extremes (that are shellable, or at least

with a tra table Möbius fun tion)?

98

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

99

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is inde omposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.

100

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is inde omposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.

Corollary: If σ = σ1 ⊕ σ2 and τ = τ1 ⊕ τ2 are �nest,

τ1, τ2 > 1 and τ1 6= τ2, then µ(σ, τ) = µ(σ1, τ1) · µ(σ2, τ2).

101

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

Corollary: If σ is inde omposable, then µ(σ, τ) = 0 unless

τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk or τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τk ⊕ 1.

Corollary: If σ = σ1 ⊕ σ2 and τ = τ1 ⊕ τ2 are �nest,

τ1, τ2 > 1 and τ1 6= τ2, then µ(σ, τ) = µ(σ1, τ1) · µ(σ2, τ2).

(only sometimes this is be ause [σ, τ ] is a dire t produ t)

102

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

103

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

This redu es the omputation of the Möbius fun tion to

inde omposable permutations.

104

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

This redu es the omputation of the Möbius fun tion to

inde omposable permutations.

Unfortunately, almost all permutations are inde omposable,

and we have no idea how to deal with them in general . . .

105

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

This redu es the omputation of the Möbius fun tion to

inde omposable permutations.

Unfortunately, almost all permutations are inde omposable,

and we have no idea how to deal with them in general . . .

X

106

M Namara-Steingrímsson (reformulation of BJJS):

Theorem: Let τ = τ 1 ⊕ · · · ⊕ τ k be �nest de omposition.

Then

µ(σ,τ ) =∑

σ=σ1⊕...⊕σk

mµ(σm,τm) + ǫm

where ǫm =

1, if σm = ∅ and τm−1 = τm

0, else

This redu es the omputation of the Möbius fun tion to

inde omposable permutations.

Unfortunately, almost all permutations are inde omposable,

and we have no idea how to deal with them in general . . .

X

107

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

108

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

2136547

215436

3216547 2154367 21543761326547

21437658 14327658 21543768 21543876

215438769A dis onne ted interval of rank 3

109

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

2136547

215436

3216547 2154367 21543761326547

21437658 14327658 21543768 21543876

215438769A dis onne ted interval of rank 3

110

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

111

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

Theorem: Almost every interval has a dis onne ted subin-

terval of rank at least three.

112

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

Theorem: Almost every interval has a dis onne ted subin-

terval of rank at least three.

Follows from the Stanley-Wilf onje ture:

The number of permutations avoiding any given

pattern p grows only exponentially.

113

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

Theorem: Almost every interval has a dis onne ted subin-

terval of rank at least three.

Follows from the Mar us-Tardos theorem:

The number of permutations avoiding any given

pattern p grows only exponentially.

114

An obstru tion to shellability of an interval is having a dis-

onne ted subinterval of rank at least three.

Theorem: Almost every interval has a dis onne ted subin-

terval of rank at least three.

Follows from the Mar us-Tardos theorem:

The number of permutations avoiding any given

pattern p grows only exponentially.

Thus, almost every interval [σ,τ ] (for τ large enough)

ontains the subintervals [π,π⊕π] and [π,π⊖π] for some

π > 1, one of whi h is dis onne ted.

115

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

116

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2 1 5 4 3 6 2 1 5 4 3 8 7 6 9

117

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2 1 5 4 3 6 2 1 5 4 3 8 7 6 9

118

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2 1 5 4 3 6 2 1 5 4 3 8 7 6 9

[215436, 215438769℄ is dis onne ted

119

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2 1 5 4 3 6 2 1 5 4 3 8 7 6 9

[215436, 215438769℄ is dis onne ted

120

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2136547

215436

3216547 2154367 21543761326547

21437658 14327658 21543768 21543876

215438769[215436, 215438769℄ is dis onne ted

121

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

2136547

215436

3216547 2154367 21543761326547

21437658 14327658 21543768 21543876

215438769[215436, 215438769℄ is dis onne ted

122

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

123

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

Theorem: An interval of layered permutations is shellable

if and only if it has no dis onne ted subintervals of rank 3

or more.

124

M Namara and Steingrímsson:

Theorem: An interval [σ, τ ] of layered permutations is dis-

onne ted if and only if σ and τ di�er by a repeated layer

of size at least 3.

Theorem: An interval of layered permutations is shellable

if and only if it has no dis onne ted subintervals of rank 3

or more.

Conje ture: The same is true of separable permutations.

125

The interval

[123,3416725]

has no non-trivial dis onne ted subintervals, and alternating

Möbius fun tion, but homology in di�erent dimensions.

Betti numbers: 0, 1, 2.

126

Some questions:

What proportion of intervals have µ = 0?

127

Some questions:

What proportion of intervals have µ = 0? Almost all?

128

Some questions:

What proportion of intervals have µ = 0? Almost all?

What kinds of intervals exist in P

129

Some questions:

What proportion of intervals have µ = 0? Almost all?

What kinds of intervals exist in P? Tori?

130

Some questions:

What proportion of intervals have µ = 0? Almost all?

What kinds of intervals exist in P? Tori?

Is there torsion in the homology of any intervals?

131

Some questions:

What proportion of intervals have µ = 0? Almost all?

What kinds of intervals exist in P? Tori?

Is there torsion in the homology of any intervals?

Is the rank fun tion of every interval unimodal?

132

Some questions:

What proportion of intervals have µ = 0? Almost all?

What kinds of intervals exist in P? Tori?

Is there torsion in the homology of any intervals?

Is the rank fun tion of every interval unimodal?

How does max(|µ(1, π)|) grow with the length of π?

133

Thanks, Ri hard!

(and you all ⌣̈)

134