A Search for Associated O VI Absorption in Intermediate...

Post on 23-Mar-2018

220 views 3 download

Transcript of A Search for Associated O VI Absorption in Intermediate...

A Search for Associated O VI Absorption in Intermediate

Redshift Galaxies with the Cosmic Origins Spectrograph

Kathryn Grasha

ABSTRACT

We present the results of a search for ultraviolet (UV) absorption line spec-

tra toward 69 quasars at 0.139 < z < 0.746 detected with the O vi λλ1032,

1038 A doublet associated with the host galaxy, drawn from the COS-Halos and

COS-Dwarfs surveys. We attempt to properly assess the ionization state and

metallicity to characterize the basic properties of the cool and photoionized gas

residing within the intergalactic medium, as traced with the O vi doublet transi-

tion and the feedback processes between galaxy/black hole growth and outflows.

We search within ±5000 km s−1 of the systemic redshift of each quasar for as-

sociated absorption line systems, finding a total of 88 absorbing systems, where

a total of 80 are detected in H i absorption and 63 are detected with the O vi

doublet lines (56 absorbing systems exhibit both H i and O vi absorption, 25

absorbing systems exhibit H i but not O vi absorption, and seven absorbing

systems exhibit O vi but not H i absorption), where 50 of the associated ab-

sorbing systems are also detected in at least one metal line. Using the set ratio

of 2:1 for optical depth, we find that 31 out of 61 of our oxygen absorbers (two

systems do not show clear 1038 A lines, and hence we are unable to evaluate the

covering factor for those systems) show evidence for partial covering, suggesting

that many of our absorbers are located very close to the central quasar embedded

within their galaxy. We also find 16 N v λλ1239, 1243 A doublet in our data, an

ion uncommonly associated with intervening absorbers. We employ CLOUDY

ionization code to model the parameters of our associated absorbing systems,

finding a median metallicity of [Z/H] = 0.3 and a mean ionization parameter of

U = −1.2. Our mean metallicity is very high when compared to prior studies

investigating the metallicity of intervening O vi absorption systems, however,

this is still consistent with what is expected in associated absorbing systems

undergoing enhanced radiation fields near the proximity of an AGN.

Subject headings: intergalactic medium — quasars: absorption lines — galaxies:

halos — ultraviolet: galaxies

– 2 –

1. Introduction

In the void between the stars within a galaxy is the interstellar medium (ISM), a crucial

component of a galaxy composed primarily of gas, dust, and metals. The ISM predominantly

consists of three phases: the cold neutral medium (CNM) component (T ∼ 104 K), well-

understood from galactic studies; a warm, ionized medium (WIM) component, consisting

of photoionized, diffuse gas (T ∼ 104 − 105 K); and a shocked, hot ionized medium (HIM)

component (T ∼ 105 − 107 K). All phases have the capability to extend several hundred

kpc from the galaxy (Lanzetta et al. 2005). This repository of the cold and hot phases of

the ISM gas, when located at great distances from the galactic center, is usually referred

to as the halo gas or the circumgalactic medium (CGM). Believed to be a major source

of fuel for star formation, the hot phase of the ISM (T & 105 K) may be the dominate

reservoir of baryonic material at low-redshift (Cen & Ostriker 1999) in combination with the

gas that resides between galaxies, known as the intergalactic medium (IGM). Additionally,

the CGM moderates galaxy feedback via outflows (Di Matteo et al. 2005; Hopkins & Elvis

2010); studies will reveal connections between the CGM and galaxy/black hole formation as

outflows are inevitably associated with star formation processes (Pettini et al. 2001; Heckman

et al. 2002; Weiner et al. 2009).

Due to the relatively low-density of the IGM and CGM, the diffuse, ionized gases that

compose the WIM/HIM cannot be detected in emission (e.g., Furlanetto et al. 2004; Bertone

et al. 2010) and are primarily detected with ultraviolet (UV) and x-ray absorption line

spectroscopy. At low-redshift, highly ionized phases are mostly detected with the O vi

λλ1031.9261, 1037.617 doublet (e.g., Tripp et al. 2008; Thom & Chen 2008; Wakker &

Savage 2009; Tilton et al. 2012), the most cosmically abundant metal, extensively studied

since the arrival of the Hubble Space Telescope (HST) and the Cosmic Origin Spectrograph

(COS; Green et al. 2012). Requiring an ionization energy of 114 eV for production, O vi

is the best tracer of hot gas owing to its large oscillator strength, the relatively common

abundance of the O5+ ion, peaking in collisional ionization equilibrium (CIE) at T ∼ 105.3 K

(Sutherland & Dopita 1993), and the transition occurring long-ward of the Lyman limit

(∼ 912 A). The incidence of O vi absorption depends on the physical conditions (e.g.,

temperature, metallicity, ionization), the location, and the dispersion of the metals within

their environment (Oppenheimer & Dave 2009).

Despite the extensive work that has recently been dedicated to the study of the ionized

gas within galaxies and the IGM with the O vi doublet (Burles & Tytler 1996; Tumlinson

et al. 2005; Stocke et al. 2006; Tripp et al. 2008; Thom & Chen 2008,a; Danforth & Shull

2005; Danforth et al. 2006; Danforth & Shull 2008; Fox et al. 2008; Fox 2011; Howk et al.

2009; Prochaska et al. 2011), where these studies focused on intervening gas systems with

– 3 –

quasar-galaxy pairs, the location and mechanism giving rise to O vi and the physical origin

of the gas is still contested (i.e., whether the gas is bound in dark matter halos, participating

in outflows, or being ejected via galactic winds). Research suggests that O vi absorption

arises predominately from photoionized systems (Tripp et al. 2008; Thom & Chen 2008a;

Howk et al. 2009; Prochaska et al. 2011) due to frequently observed well-aligned profiles of

O vi and H i, the general narrowness of accompanying Lyα profiles, and common detection

of C iii λ977 lines with the O vi absorber. Other research supports O vi arising from

collisionally ionized environments (Fox 2011). This has lead to models suggesting that O vi

arises from a combination of both collisionally ionized and photoionized gas (Sembach et al.

2003; Collins et al. 2004) as the observed ionization conditions cannot be described with a

single origin.

Although UV absorption line spectroscopy is an efficient means of studying the proper-

ties and distribution of the CGM, the origin and relevance of the CGM material to galaxy

evolution over cosmic time is not fully understood. The distribution of O vi may provide

insight to how metals are dispersed and depleted in galaxies, in addition to advancing knowl-

edge on the nature and physical conditions of the hot, diffuse ISM. Because it is common to

detect both O vi and H i in absorption in the same kinematic region, it is natural to expect

that these ions exist in a multiphase medium (i.e., the hot and warm gas reside together),

arising from shocks and/or turbulent mixing of the different phases. Indeed, recent work by

Rupke & Veilleux (2013) has found that it is common for ionized and neutral gas phases of

an AGN-driven outflow to be cospatial and share similar kinematics.

Studies of the CGM will provide insight to the feedback interactions occurring in galaxies

and how important the role of feedback has on galactic evolution. Unfortunately, due to

observational constrains, outflow processes and the interactions that occur between a galaxy

and the IGM, such as gas accretion or galactic winds, are usually limited to regions very

close to the galaxy. Fortunately, quasar absorption line studies are excellent probes of the

gas located near an active galactic nucleus (AGN) and also have the ability to explore the

physical conditions of IGM gas located far from a galaxy, thus allowing us to build upon our

knowledge of galactic evolution and processes that add and/or remove gas from galaxies. In

this respect, the connection between quasar absorption line systems and their environment

provide a crucial understanding of the properties and evolution of galaxies. The classification

of AGN absorbers are normally categorized according to their H i Lyα column densities:

damped Lyα absorbers (DLA; Wolfe et al. 2005) show H i columns of NHI ≥ 2× 1020 cm−2,

Lyman limit systems (LLS; Tytler 1982) exhibit 1016 ≤ NHI < 2× 1020 cm−2, and the Lyα

forest (Rauch 1998) exhibits columns of NHI < 1016 cm−2. The LLS likely represent the

interface between the highly ionized Lyα forest – the most-common H i absorbing system

we find in our study – and the dense, neutral DLAs (Lehner et al. 2009).

– 4 –

The origins and distribution of absorbing systems within the galactic environments

around the host quasar, in addition to furthering knowledge of the properties of the ion-

ized medium, motivates this study. Studies like this help shed light on the properties of

the environments near quasars, where it is generally believed that bright quasars reside in

luminous galaxies (Jahnke & Wisotzki 2003), embedded in over-dense environments with

massive dark matter halos (Serber et al. 2006). Galactic feedback can be regulated with

black hole accretion and ejection processes (Heckman et al. 1991a,b; Haiman & Rees 2001),

capable of driving material from the central region of a galaxy with outflows reaching veloc-

ities that exceed 10 000 km s−1, enriching the chemical composition of the IGM (Hopkins &

Elvis 2010; Barai et al. 2011; Cavaliere et al. 2002). These systems, characterized as broad

absorption line (BAL) systems, are common in the universe, however, knowledge of these

far-reaching outflows on galactic evolution still needs further investigation. Absorption line

spectroscopy is the best way to study the environment of the host galaxy in the vicinity of

the quasar, however, it is often challenging to distinguish if the gas associated with the host

quasar originates from the accretion disk on sub-parsec scales (Elvis 2000; Krongold et al.

2007), or from the halo gas, out to kpc-scales (Kinkhabwala et al. 2002).

In this paper, we focus on O vi absorbers associated with their host galaxy to constrain

how the near-proximity of an AGN influences the halo gas within the galaxy; we expect

the physical condition that gives rise to these associated absorption systems will greatly

differ in properties from intervening absorption systems that do not interact with an AGN.

What is the nature, origin, and physical conditions of these associated O vi systems? Are

these collisionally ionized clouds associated with separate cooler, photoionized clouds of H i

absorption, or arising in systems with a combination of both processes? We set out to

further our understanding on the nature of highly ionized absorbers in our redshift range

of 0.139 < z < 0.746. Despite the limitations of the pencil-beam measurements along the

line of sight to the background source of absorption line surveys, we believe that all of our

absorbers lie within their host galaxy, and quite possibly, have a close proximity to the

central quasar. Because of this reason, we do not calculate any cosmological quantities from

our data owing to the effects of enhanced radiation fields on associated absorption systems.

Throughout this paper, we adopt a ΛCMD concordance cosmology model of Ωm = 0.27,

ΩΛ = 0.73, and H = 70 km s−1 Mpc−1 (Komatsu et al. 2011). All numbers taken from the

literature are re-calculated (if necessary) to this cosmological model.

2. Sample Selection

The galaxies in this study are drawn from the COS-Halos (Tumlinson et al., in prep)

and COS-Dwarfs (Bordoloi et al., in prep) surveys, with the primary motivation of studying

– 5 –

the CGM and its contribution to galactic formation. We are specifically focused on the

properties of gas in the immediate vicinity of the target quasars, e.g., gas ejected by the

quasar, gas falling in to feed the black hole, or the ambient gas in the host galaxy.

The COS-Halos survey is composed of 39 quasars in the redshift range 0.229 < z < 0.873,

while the COS-Dwarfs survey has 41 quasars in the redshift range 0.126 < z < 0.990. The

sources in both samples were selected based on quasar-absorber pairs, where each quasar

has a known foreground absorber with an impact parameter of 10–150 kpc. While the COS-

Halos and COS-Dwarfs surveys are designed to investigate how both galaxies acquire their

gas and how the gas is returned to the IGM within the foreground galaxies, we utilize these

surveys to investigate the same science goals, but with IGM gas that interacts with the

quasars themselves. Our survey has the benefit of being a blind survey for O vi absorption

as the quasar sight-lines were selected based on the properties of foreground galaxies, not on

the properties of the quasars themselves. The only criterion placed on the selection of the

quasars was that they are brighter than magnitude V ≈ 18.2.

We select a total of 69 sight lines (37 from the COS-Dwarfs survey, 32 from COS-Halos)

in the redshift range 0.139 < z < 0.746, meeting our requirement of observing O vi at the

systemic redshift of the quasar in our wavelength window of 1150 – 1800 A. We exclude eleven

sight lines as the redshift of the quasar places the OVI doublet outside of our wavelength

coverage.

3. Results

3.1. Line Identification

We employ two methods of identifying absorption line systems: Identifying O vi systems

irregardless of any other absorber present and identifying H i lines without placing constraints

on the presence of O vi absorption. For our first method, each sight line is inspected in the

velocity range ±5000 km s−1 from the systemic redshift of the source for the O vi λλ1032,

1038 doublet absorption lines, present at the fiducial line strength ratio of 2:1 expected

from the oscillator strengths of the two transitions. If the doublet feature is found, we label

these as O vi absorption provided that the λ1032 absorption line has an equivalent width

W0 > 3σ. Once we have determined the presence of the O vi doublet, we search at the same

velocity offset for each sight line for affiliated H i Lyman series and other metals within our

wavelength coverage at the same range of ±5000 km s−1. Table 1 lists all the metal lines we

found with our line-identification procedure.

Observationally, if the velocity separation between two systems in a given sight line are

large, this as an indication that the absorbers are not bound to each other. While it is true

– 6 –

that two systems can be unbound but have a small velocity difference along the line of sight

(or vice-verse), if the normalized flux level rises to unity between two components (i.e., there

is no overlap in velocity space), we categorize these absorbing components as unique systems.

Throughout this paper, we define a “system” such that they arise from unique absorption

systems.

We detect associated O vi absorption in 49 of our sources with a total of 63 kinematically-

unique O vi absorption systems in our survey. Table 2 lists all of our sources along with

central velocity of each absorption system detected in O vi. For complex, multi-component

absorption systems, the velocity is defined to be the central velocity for the strongest in-

dividual component. Of our 63 O vi absorption systems, seven are not detected in H i

absorption at the same velocity. We believe that these O vi absorbers lacking evidence for

H i lines originate in relatively over-dense regions situated close to the central quasar. The

possibility of weak Lyα H i lines in O vi absorption systems is why we do not first require

detection of Lyα, using that redshift to then identify the O vi doublet. If we detect moder-

ately strong Lyα but Lyβ is not present, we assume that the Lyα line measurements are not

badly saturated. The majority of our systems are only detected in O vi and H i absorption.

We recognize that due to the nature of determining the presence of an O vi absorber in

our sample, we may miss detections of systems that either have undetected λ1038 profiles due

to low S/N and/or systems where either the λ1032 or λ1038 absorption lines are unobservable

due to blending with unassociated features. Fortunately, the redshift regime of our survey

occurs in a “sweet spot”, where there is very little contamination due to Lyα forest lines.

We note that there are two systems in our sample that are not detected with both O vi

transitions due to blending at the same wavelength of the O vi λ1038 line. For these

systems, we are confident in the O vi λ1032 detection as there is associated H i absorption

at the same wavelength.

For our second line identification technique, we identify all possible H i absorbing sys-

tems without accompanying O vi absorption. For sources where Lyα is outside of our

observing window (z > 0.48), we require at least two H i lines to declare the presence of

an absorbing system. All in all, we find 88 kinematically-unique absorption systems – 80

detected in H i absorption and 63 detected in O vi absorption – in 49 sight lines. The

breakdown is as follows: 56 absorbing systems exhibit both H i and O vi absorption, 25

absorbing systems exhibit H i but no O vi absorption, and seven absorbing systems exhibit

O vi but no corresponding H i absorption. Additionally, 50 of the 88 absorption systems are

also detected in at least one other metal ion transition. Figures 1–22 show all absorbing lines

detected in our survey, listed by name where multiple absorption systems detected in one

sight line are listed in parenthesis, for ease of comparison to Tables 2 and 3. Figure 23 shows

– 7 –

the sight line of the richest object in our survey with nine O vi systems detected. Figure 24

shows the distribution of the absorbers in our survey as a function of redshift, broken down

into the number of absorbers detected per sight line.

Excluding two absorbers, J0912+2957 at a velocity displacement with respect to the

quasar of vabs,OVI = 4016 km s−1 and J1103+4141 at vabs,OVI = 1843 km s−1 all of our

O vi absorbers are less than vabs,OVI = 586 km s−1 and 73% (46/63) have velocity outflows

of vabs < vquasar. The large number of blueshifted absorption features indicate that we

are looking at gas outflows, where the two highly redshifted systems of J0912+2957 and

J1103+4141 are most likely inflows onto the accretion disk.

It is important to note that absorbers detected in velocity space near the quasar redshift

does not correspond to a spatial location with respect to the quasar. We search a maximum

displacement velocity δv = vquasar − vabs, where we make the cut-off that associated (intrin-

sic to the galaxy) absorbers are located at δv < 5000 km s−1 and all intervening absorbers

(unassociated with the galaxy) are located at δv > 5000 km s−1. The cut-off in velocity

space supports the different physical conditions observed in intrinsic compared to inter-

vening absorbers as proximate absorbers can have time-varability of absorption (Narayanan

et al. 2004), partial coverage of the background continuum source (Hamann & Ferland 1999),

super-solar metallicities (Ganguly et al. 2006), and detection of highly excited ionic states

(Petitjean & Srianand 1999; Fechner & Richter 2009). Employing a velocity cut-off to dif-

ferentiate between intervening and intrinsic absorbers can introduce two problems: quasar-

ejected intrinsic systems can appear at higher velocity outflows (Nestor et al. 2008) and some

intervening systems can appear at lower velocity outflows (Sembach et al. 2004). We make

the assumption that all absorbers detected within δv < 5000 km s−1 are intrinsic absorbers

and we do not focus on studying the transition between intrinsic and intervening absorbers

in this paper.

3.2. Column Densities

We measure column densities for all absorption lines within 5000 km s−1 of zquasar using

both the apparent optical depth (Sembach & Savage 1992) and Voigt profile fitting with

the measured COS line-spread function. Multiple transitions of the same species (e.g., O vi

λλ1032, 1038) are fit simultaneously such that multi-component profiles yield N , b, and v

values that are identical for each species within a given system. We allow the components

of different species to vary in their central velocity and b-parameter with respect to other

transitions in a system as it is the measured column densities, line widths, and relative

velocities that diagnose the physical conditions exhibited by the observed absorption systems.

For fully resolved, optically thin lines that reside on the linear portion of the curve of

– 8 –

growth (COG) plot (see the Lyα line in J0012−1022 (1) of Figure 1), the optical depth per

unit velocity is given as

τ(v) =πe2

mecfλ0N(v), (1)

where f is the oscillator strength of the transition, λ0 is the transition wavelength (A),

and N(v) is the column density per unit velocity (cm−2). This method makes no a priori

assumption about the functional form of the velocity distribution.

However, the “true” optical depth measured is convolved with the instrumental spread

function of the telescope φI . This instrumental blurring of the true optical depth is referred

to as the apparent optical depth, calculated as

τa(v) = − ln

(

Iobs(v)

I0(v)

)

= − ln[e−τ(v)⊗ φI(v)], (2)

where I0 is the continuum intensity and Iobs is the observed intensity of the line.

The apparent column density (cm−2 (km s−1)−1) Na(v) profile is calculated from the

apparent optical depth profile as

Na(v) =mec

πe2τa(v)

fλ0

= 3.768× 1014τa(v)

λ0f, (3)

where the instrumentally-smeared total apparent column density is the integral over the

entire velocity range, Na =∫

Na(v)dv, dependent only on the resolution of the instrument

and the shape of the line. When comparing the Na profiles of a doublet feature, a resolved

system will exhibit similar Na(v) profiles. In contrast, when unresolved saturation features

occur, the Na(v) profile of a stronger doublet line will be smaller than the Na(v) profile

of a weaker line (see Figure 25 for an example of a resolved and unresolved system). For

systems that are optically thin (τ(v) << 1) and the functional spread φI is fully resolved

[i.e., FWHM(line) >> FWHM(φI)], the apparent integrated column density equals the total

column density from component profile fitting.

For lines that have moderate saturation, thus residing on the saturated portion of the

COG plot (see the Lyα line in J0012−1022 (2) of Figure 1), finding the column density is more

difficult as small uncertainties in the Doppler parameter b result in significant uncertainties

in the estimated column density. For these moderately saturated lines, the central optical

depth is given as

τ =π1/2e2fλ0

mec

N

b, (4)

where b is the velocity dispersion (km s−1). In cases of strong saturation, the column density

is better described by Voigt profile fitting. However, if all lines being fitted are badly sat-

– 9 –

urated, even profile fits will result in huge uncertainties. In such situation, we report lower

limits to the derived column density.

For H i column densities, the highest Lyman transition that is not saturated is used for

the total H i column density measurement. Nearly half of our systems with Lyman series

exhibit moderate saturation, meaning that direct integration of the line profiles will under-

estimate the total column density. For these cases, the column densities are derived from

profile fitting as long as a couple of the lines are not strongly saturated. To perform this, we

simultaneously fit multiple Lyman series profiles. By using the component information in the

higher transition lines, the underlying component structure is more accurately determined,

as they are usually only seen in these weaker lines. We do realize that there is an inherit

uncertainty to the number of components necessary to adequately describe a line. Therefore,

for all profile fitting, we fit with the minimum number of components necessary to obtain a

satisfactory fit.

For cases of non-detections where there is no absorption detected in the chosen velocity

range (see the O vi λ1032 line in J0012−1022 (1) of Figure 1), we estimate the 3σ upper

limit to the column density using the uncertainty in the equivalent width, acquired with

direct integration techniques integrated over the same velocity range as the corresponding

Lyα profile. If we assume that the non-detection line resides on the linear part of the curve

of growth, the column density (cm−2) upper limit is given as,

N3σ <1.13× 1017 Wλ,3σ

λ20f

. (5)

Table 3 lists the total column density acquired by direct integration, where no individual

component is separated. Table 4 lists the individual component properties from Voigt profile

fitting.

3.3. Covering Factor C(v)

A valuable indicator for determining the location of gas in associated absorbers is the

covering factor, C(v). Defined such that 1−C(v) indicates the fraction of the photons from

the quasar that are not intercepted by the absorbing cloud. However, estimating C(v) for a

given ion transition is non-trivial, and in practice, can only be determined with unblended

doublet systems.

When the strength of a doublet system is expected to have an optical depth ratio of

2 to 1 (e.g., O vi), we can derive (Hamann & Ferland 1999; Yuan et al. 2002) the partial

– 10 –

covering factor as

C(v) =

I2R−2IR+1

IB−2IR+1, IR > IB ≥ I2R

1, IB < I2R1− IR, IB ≥ IR

where IR and IB are the normalized intensities of the red (here, O vi λ1038) and blue (here,

O vi λ1032) doublet lines, respectively, and C(v) is the total cloud area covering the emission

source. For sources that are suspect of partial covering effects, the optical depth of the red

doublet line is corrected for partial covering as

τcorr,R(v) = − ln

(

IR(v)− IB(v)

1− IR(v)

)

. (6)

We use the O vi doublet to compute the covering factor and we fix the ratio of the optical

depths of the blue and red lines at 2:1 with the assumption that the lines are fully resolved

and can be described with Gaussian profiles.

When dealing with cases of partial coverage, we do not use the integrated column density

in the reported tables, determined in the previous section; instead, we compute the corrected

integrated apparent column density Na,corr (cm−2) of the ion (assuming full resolution and

Gaussian distributions of optical depth) by integrating the corrected optical depth across

the absorption profile as

Na,corr =mec

πe2λ0f

τcorr(v) dv = 3.768× 1014(

τ0,corrλ0f

)

, (7)

where τ0,corr is the central optical depth of the absorption line, corrected for partial covering.

Overestimating the covering factor will give rise to a measured apparent column density that

is lower than the true column density. Therefore, applying the correction factor will increase

our total Na values. For cases that have full coverage C(v) = 1, the corrected optical depth

(eq. 6) reduces to eq. 2 and Na,corr ≈ Na.

Figure 25 compares the apparent column density profiles for both the O vi doublet in

a system not affected by partial covering and in a system that does show partial covering.

Unfortunately, saturation and partial covering are degenerate and it is hard to distinguish

between the two effects outside of Voigt profile fitting. Partial covering will result in missing

flux, therefore if a system is subject to partial covering, the flux in the stronger line will be

underestimated while the weaker line will be overestimated, which results in poor profile fits.

Figure 26 shows an example case of how we determine when a line has partial covering from

profile fitting.

– 11 –

3.4. Metallicity

The absolute metallicity abundances for each source is measured using solar reference

abundances ([X/H]⊙) from Asplund et al. (2009) as

[X/H] = log[NX/NHI] + log[fHI/fX]− [X/H]⊙, (8)

where f is the ionization fraction for a given ion, which depends on the strength of the

surrounding radiation field and we have assumed solar relative elemental abundances.

Two ionization states of the same species is enough to pin down the metallicity and ion-

ization parameter of a system. However, when two ions of a single element are not available,

it is possible to use other elements to arrive at an estimation of the metallicity. However, it

will add uncertainty because relative elemental abundances have to be considered, which we

do not know. In general, we avoid using nitrogen for our metallicity measurements, as N is

often be under-abundant due to nucleosynthesis effects in low-metallicity gas (Henry et al.

2000). All of our ionization fractions were constrained with CLOUDY modeling (Section

4.2).

4. Analysis

4.1. Gas Temperature of the Absorbers

If we assume that two well-aligned species arise from the gas phase, it is possible to

derive an estimate for the gas temperature from the Doppler parameters of the absorption

profiles from Voigt profile fitting (Chen & Prochaska 2000; Tripp & Savage 2000). Using

the assumption that line broadening results entirely from thermal motions, the Doppler

parameter b (km s−1) is related to the gas temperature via

b2 = 2kT/m, (9)

where T is the temperature (K), and m is the mass. However, we typically expect there to

be gas turbulence and/or unresolved components that also contribute to the line width. In-

cluding these non-thermal components will only further to lower the estimated temperature,

essentially making our temperature estimates upper limits. We can express this temperature

relation using the atomic mass number (A) of both elements as

b2 = b2nt + 2kT/m = b2nt + (0.129)2T/A, (10)

with the assumption that any broadening owing to non-thermal motions (turbulence) can

be described with Gaussian profiles and requiring that both species have different A values.

– 12 –

As an example, we demonstrate these effects for the sight line of J1059+2517. The tem-

perature upper limits from equation 9 and the Doppler parameters of bHI = 34(7) km s−1 and

bOVI = 16(2) km s−1, from which we derive THI < 6.9(1.4)×104 K and TOVI < 2.4(3)×105 K.

Since the velocity centroids of the O vi and H i profiles are quite close (∆v < 10 km s−1), it is

reasonable to believe that the O vi and H i absorption lines originate in the same gas cloud.

Using this assumption, we can derive the non-thermal components and temperature from

equation 10 using the values of bHI and bOVI: T = 5.7(1.3)×104 K and bnt = 14(3) km s−1. If

we compare this with the temperature from our best-fit CLOUDY model to this absorption

system (Tcloudy = 1.4 × 104 K), we find that our answer is very reasonable for photoionized

conditions (see next section for detailed information about CLOUDY). Our answers are not

identical owing to the large amount of simplicity and uncertainty within CLOUDY models,

which excludes any physical conditions outside of photoionization equilibrium.

Such low-temperatures favor photoionization conditions (T ∼ 104 K), however, it is

important to note that there is a huge amount of uncertainty in the b-parameter. Changing

the number of fitted components to an absorption profile can lead to substantially different

profile fits through a different mix of broad and narrow components. Additionally, equation

10 assumes equilibrium and does not take into consideration the possibility that the absorp-

tion arises in non-equilibrium collisionally ionized gas (T > 2 × 105 K), which cools faster

than recombination. The Doppler parameters for O vi and H i are shown in Figure 27 along

with a limiting case where bnt = 0.

4.2. Physical Conditions of the Absorbers

The structure of photoionized gas is primarily determined by the shape of the incident

continuum flux and the ionization parameter. We investigate the physical conditions of each

absorber with photoionization models from the CLOUDY (v10.0; Ferland et al. 1998) ion-

ization code, where we find both the metallicity of each absorption system and the ionizing

parameter, U , from fitting the models to our observations with the models. In all of our

models, we use a standard AGN continuum flux model, solar relative abundances, and the

galactic gas is considered to be a uniform slab that is illuminated from one side by photoion-

izing radiation. The standard AGN model produces a multi-component continuum similar

to that observed in typical AGN, similar to the continuum from Mathews & Madau (1987).

The models do not heavily depend on the value of the hydrogen volume density nH.

Using the observed column densities of each source for a specific kinematic component

(i.e., each individual absorbing component), we use the total hydrogen column density NHI

– 13 –

from Voigt profile fitting and determine the ionization parameter (U) for each source as

U =Q

4πr2nHc, (11)

where r is distance from the ionizing source center to the illuminated face of our gas cloud,

Q is the number of H-ionizing photons per second, and nH is the total number density of

hydrogen (109 cm−3). For our whole sample, a grid of photoionization models range from

−4 < logU < 2 with steps of ∆ logU = 0.1 dex and metallicity values cover the range of

−2 < [Z/H] < 1 at relative solar abundances with step size ∆ logZ = 0.1 dex. The best-fit

CLOUDY model to a set of observations is done using the χ2 statistic for combinations of

metallicity Z and ionization parameter U as

χ2(Z,U) =∑

i

(

Ni,obs −Ni,model(Z,U)

σ(Ni,obs)

)2

, (12)

where Ni,obs are the measured column densities for each specific kinematic component for a

source, σ(Ni,obs) is the uncertainty in the measured column density, Ni,model are the column

densities for a specific ion at different metallicity and ionization values, and we sum over the

total number of ions i for each kinematic component. The estimated 1σ error bar corresponds

to a 1σ confidence interval for each parameter, obtained by finding the optimized parameter

values that satisfy ∆χ2 = 1 for each best-fit.

For our CLOUDY fitting procedure, we assume that for a given absorption system, all

of the absorbers arise from the same gas cloud. We investigate the systematic errors from

our modeling resulting from this assumption by also placing more conservative CLOUDY

estimates on our data. This is done through an assumption that all similar ionized states

arise from a single gas cloud that is disjoint from a different gas cloudy at lower ionization

state, where both clouds lie at the same velocity (i.e., O vi and N v absorption profiles are

distinct from C iii absorption observed at the same velocity). For these more conservative

estimates, we find that the median metallicity changes from [Z/H] = 0.3 to [Z/H] = 0

(conservative), where the spread is the same. Figure 28 shows some example CLOUDY fits

to select absorption systems.

Figures 29 shows the distribution of [Z/H] and U for our detections, upper limits, and

lower limits for both the conservative case (not assuming all absorption features arise from

a single origin) and the non-conservative case (all absorption features have single origin).

Figures 30 shows the same, except broken down by systems exhibiting partial covering versus

those that are coving factors of unity.

For O vi systems not detected in H i, we place limits on the CLOUDY [Z/H] and U

measurements. The proper statistical analysis of detections mixed with limits is dealt with

in Section 4.7.

– 14 –

4.3. N v Occurrance

The presence of the N v λλ1239, 1243 A in found in sixteen sight lines within our sample,

providing an independent diagnostic on both the physical conditions and the location of the

absorbers. N v requires a large ionization potential of 77.5 eV, created only by the hard

radiation of a close-by quasar (Fechner & Richter 2009), therefore, observations of N v are

rarely observed in non-associated absorbers. Intervening absorbers located in the IGM are

typically linked a softer ionizing background and will lack N v features. The strong N v

detections, coupled with the fact that N v is rarely observed in intervening absorbers, seen

in 16 of our sight lines, support the location of these absorbers being in the vicinity of a

foreground quasar, undergoing a higher level of ionization. Figure 31 shows the metallicity

and U parameter distributions of the absorption systems, both those detected and not, in N v

absorption. No statistically significant differences are found between the systems detected

and those not in N v absorption.

4.4. Absorber Classification: Single-Phase and Multiphase Absorbers

In order to investigate the physical conditions of the relatively cool (T ∼ 104 K), pho-

toionized gas arising from the O vi absorption systems, we classify the absorbing systems in

our sample according to the velocity offset between the O vi and H i. This is done by seg-

regating “simple” (single-phase) absorption systems from those exhibiting a more complex

(multiphase) structure.

Many of our O vi absorption systems are complex, and quite possibly, multiphase

absorbers. Each unique kinematic velocity system is designated a central velocity; for multi-

component systems, this is the velocity of the strongest O vi component of the system. We

determine the velocity alignment of the system as ∆v = vHI − vOVI with an uncertainty in

the offset given as σ(∆v) =√

σ2OVI + σ2

HI + σ2wave, where σOVI and σHI are the uncertainties

in the central velocity of the O vi and H i absorption profiles and σwave is the uncertainty in

the wavelength calibration across the observed wavelength range. We take σwave = 8 km s−1,

the average value of the uncertainty in the wavelength calibration for COS, and define well-

aligned profiles when ∆v < 2σ(∆v).

The similar velocity structure for systems that are well-aligned suggest that the O vi and

H i gases are indeed, cospatial and arising from a single-phase gas cloud. Our assumption a

single gas phase that we use in our CLOUDY models works well for these cases. For systems

that have different velocity structure for the O vi and H i features suggests these gases may

not be arising from a single origin and that our assumption of a single gas phase is likely

invalid. It is this reason that we performed our CLOUDY modeling twice, once assuming

– 15 –

that all absorption features in a system arise from a single cloud, and again, where we are

more conservative and do not force all absorption features to originate from a singlephase

gas cloud.

Figure 32 shows the velocity offsets between H i and O vi for our 56 systems detected

in both H i and O vi absorption. 33 out of our total of 56 absorbers have well-aligned

O vi and H i absorption profiles, according to our definition above. The similar velocity

structure suggests a physical origin of the O vi absorbers, where the low-temperatures are

consistent with the absorbing gas arising from photoionized processes. This is consistent

with our temperature results from Section 4.1, where we showed that using the b-parameters

from H i and O vi absorption profiles result in temperatures that are consistent with the

gas arising from photoionization. Figure 32 shows the histogram for the absorber pair as a

function of velocity difference between O vi and H i, where it can be easily seen that a great

deal of our cases do exhibit well-aligned absorption profiles.

4.5. The NHI/NOVI Ratio

The ratio of the NHI/NOVI, sensitive to the ionization conditions within an absorbing

system, can be used to quantify the different physical conditions. Changes in the temper-

ature, metallicity, ionizing radiation field, and gas density can lead to substantial changes

in the NHI/NOVI ratio. In multiphase absorption systems, lower ionization phases can in-

crease the strength of the H i absorption profile without an increase in the O vi strength

if the input energy is less than the 114 eV necessary to create O5+. In general, a low ratio

would indicate a high-density region, resulting from high-metallicity gas and the occurrence

of strong ionization. Figures 33, 34, 35, 36, 37, show the NHI/NOVI ratio as a function of the

velocity offset of the absorbing system from the central quasar, velocity difference between

the O vi and H i component, redshift, metallicity, and width of the O vi λ1032 absorption

feature.

4.6. Final Analysis Information

The nature of a project this large means that there is a lot of information to absorb and

digest. The rest of Figures 32 – 36 all show important information about the distribution

of [Z/H], NOVI, U , and NHI as a function the velocity offset of the absorber from the quasar

(Figure 33), velocity difference between the O vi and H i absorbing line (Figure 34), redshift

(Figure 35), metallicity [Z/H] (Figure 36), and FWHM of the O vi λ1032 line (Figure 37).

Each figure provides a new and unique analysis of our absorbers, where we interpret the

statistical significance of any correlations present in the next Section.

– 16 –

4.7. Survival Analysis

In order to transform our line measurements into statistical descriptions and distribu-

tions, we must properly account for all measurements, detections and non-detections. To

best deal with the mixture of measurements and upper/lower limits, we apply methods of

survival analysis to our data, statistics designed to properly correct for “censored” data sets.

In our study, we use the Kaplan-Meier product limit, a single-variate survival statistic

that provides a non-parametric maximum likelihood estimate of a distribution directly from

an observed data set. For our data set, which has a combination of detections, upper limits,

and lower limits, we will use the following notation, following that of Simcoe et al. (2004): the

term “measurement” describes the combined data set of detections, upper, and lower limits,

Ztrue represents the actual measured metallicity for a detected line such that Ztrue = Zi,

while for upper limits, Ztrue < Zi, and for lower limits, Ztrue > Zi. For a collection of N data

points with a given metallicity Z (either a detection or a upper/lower limit), we sort all the

metallicity values such that Zi ≤ Zi+1. A cumulative probability distribution P (Z > Zi) is

built, describing the fraction of absorbers that have a metallicity above a given threshold

(see Figure 38). At the maximum of the distribution (Z+), every measurement is at a lower

metallicity (i.e., P (Z < Z+) = 1). Using standard notation, this is written as

P (Z ≥ Z+) = 1− P (Z < Z+) = 0. (13)

All subsequent values of P (Z ≥ Zi) are calculated at each value i by stepping down from

the Nth measurement. We can calculate the conditional probability as

P (Z ≥ ZN)

= 1− P (Z < ZN)

= 1− P[Z<ZN |Z<Z+]P (Z < Z+)

= 1− P[Z<ZN |Z<Z+],

(14)

where P[Z<ZN |Z<Z+] is the conditional probability that Z < ZN given that Z < Z+. P (Z ≥

ZN−1) becomes

P (Z ≥ ZN−1) = 1− P[Z<ZN−1|Z<ZN ]P[Z<ZN |Z<Z+]P (Z < Z+). (15)

For an individual metallicity value i, this conditional probability becomes,

P (Z ≥ Zi) = 1−N∏

j=i

P[Z<Zj |Z<Zj+1]. (16)

For a sample composed entirely of detections, the conditional probability at each value i can

be written as

P[Z<Zj |Z<Zj+1] =number of detections with Z < Zj

number of detections with Z < Zj+1

(17)

– 17 –

=n(Z<Zj+1) − n(Z=Zj)

n(Z<Zj+1)

.

The combination of both upper and lower limits in our data makes the quantities

n(Z<Zj+1) and n(Z=Zj) not uniquely known. Because limits do not provide any informa-

tion on the relation between Ztrue, Zj, and Zj+1, an ambiguity is introduced into the sample.

The Kaplan-Meier product circumvents this ambiguity by retaining knowledge of all the

limit values and effectively ignoring those values in the construction of the conditional prob-

ability P[Z<Zj |Z<Zj+1]. The conditional probability, taking into account non-detections, can

be calculated as

P[Z<Zj |Z<Zj+1] =number of measurements that must have Ztrue < Zj

j. (18)

We can combine the results for detections and non-detections, writing the conditional prob-

ability as

P[Z<Zj |Z<Zj+1] =

1 Zj = limitj−n(Z=Zj)

jZj = detection.

(19)

In the final product, the Kaplan-Meier product estimate is a piecewise function, remain-

ing constant for censored data (upper/lower limits), and only jumping at the metallicity

values of detections. We assume that all limits are independent of each other and that the

censoring is random. While it is true that very high-metallicity values are less likely to be

censored compared to their low-metallicity counterparts (thus causing censoring of metal

abundances to not be truly random), the systems in our sample were not selected with a

metallicity criterion, and thus are expected to be unbiased.

Figure 38 shows the Kaplan-Meier distribution for our sample of metallicities, shown as

the entire sample, and divided into systems that do (not) exhibit partial covering. We take

care to separate the sample by the covering factor as we believe systems fully covering the

background emission source are further from the central black hole compared to those systems

that do not fully cover their background source. These full-covering systems likely interact

less with their black hole and may exhibit different properties than those systems with partial

covering factors. For the case where we have contamination from false O vi detections, the

KM-distribution represents an upper bound to the true metallicity distribution. As can be

seen in Figure 38, the censored data are mixed in with the measurements over nearly the

entire range covered by our sample.

We can apply the results of this Kaplan-Meier product estimate to a Kolmogorov-

Smirnov test (KS-test), where the KS-test is a statistical description whether or not two

distributions are drawn from the same parent population. Using our metallicity distribution

– 18 –

of systems exhibiting partial covering compared to those that do not, we conclude that the

two samples are not drawn from the same population at a significance value less than 1σ.

In other words, the metallicity distribution for absorption systems that exhibit full covering

is nearly identical to the metallicity distribution for the systems that show partial covering.

One can conclude from this that all of our absorption systems are indeed intrinsic absorption

systems, lying close to the vicinity of the quasar. Future work is needed to apply the KS-test

to all the variables in this paper.

5. Discussion

Given the information about our derived temperatures from the Doppler width b for

our absorption systems, can we confidently claim whether not our O vi absorbers favor

photoionization or collisional ionization? In extragalactic O vi absorbers, it is generally

believed that intrinsic absorption systems are undergoing an UV ionizing radiation field

that is substantially harder due to the close proximity of the central quasar compared to

intervening absorption systems. Additionally, the absorption may also arise in very low-

density gas with long path lengths. Both of these cases indicate photoionization as a more

viable solution for the occurrence of O5+ in our associated absorption systems and this is

supported with our derived temperatures from line fitting, typically T < 105 K. This assumes

that the H i and O vi absorption arise from the same gas cloud, with the line width arising

from thermal broadening.

To complement our CLOUDY modeling, we compare our results with the theoretical

modeling of time-dependent metal-enrichment of halo gas from a nearby AGN of Oppen-

heimer & Schaye (2013). In their models, they find that diffuse halo gas in thermal equi-

librium, when exposed to near-by AGN radiation (i.e., the AGN “turns on”), will quickly

photoionize, reducing the observed NHI almost instantaneously (H i becomes ionized). When

the AGN radiation is turned off, the hydrogen quickly recombines (1–20 Myr) while the re-

normalization of metal abundances occurs over a much longer timescale. Referred to as a

“fossil zone”, the region immediately near the proximity of an AGN will exhibit enhanced

high-ionization states with a reduction in low-ionization states. We can use this fossil zone

model to explain associated absorption systems that show unusually strong, high-ion associ-

ated metal systems, as such systems may either be located within these fossil zones or near

an AGN that has very recently turned on. Fossil proximity zones are especially important

for high-redshift systems (z & 2), as it is possible that a majority of metal-enriched systems

are non-equilibrium fossil zones; using equilibrium coding to model such systems would re-

sult in incorrect inferred physical conditions of the absorber systems. Our findings of O vi

absorption with little-to-no H i absorption supports the fossil proximity zone model as we

observe enhanced O vi lines and weakened H i lines and other low-ion metals, consistent

– 19 –

with the the idea of metals taking longer to reach equilibrium after an AGN has turned off.

In studies of absorption systems, one would expect to find a change in NHI, NOVI as the

velocity of the absorption approaches the redshift of the quasar as the ionizing field would

increase as one approaches the quasar (the proximity effect). We find no dependence of NOVI

with proximity, which may cause one to question if photoionization from the background

quasar is the main driver of the observed O vi. However, since we are only studying intrinsic

systems within 5000 km s−1 from the quasar, we naturally would not expect to see this change

as (ideally) all of our gas systems are located very close to the AGN and no absorber in our

sample is free from the ionizing effects of the AGN. This is further supported by the large

number of absorption systems exhibiting partial covering (31 out of 61 O vi absorbers) and

the large number of sight lines observed in N v absorption, a species uncommonly observed

in intervening systems.

Along the same line, it is reasonable to expect Lyα absorbers to exhibit lower metal

abundances at greater distances from their host galaxies as the UV ionizing radiation field

decreases with distance. We have found a small number of associated O vi absorbers without

corresponding H i absorption, which suggests an overdense environment, devoid of cold,

neutral hydrogen (super ionized) accompanied with high-metallicity. While there are only

seven of these systems, they are all located at velocity outflows greater than 1000 km s−1

from the redshift of the central quasar. We are unable to draw any correlations due to the

small number of these systems in our sample.

6. Summary and Conclusion

We present the results of 63 associated O vi absorption systems in 49 sight lines, selected

from high-resolution HST COS-Halos and COS-Dwarfs surveys in the redshift range 0.139 <

z < 0.746. We adopt a blind search technique for identification for O vi λλ1032, 1038

doublet lines, relying only on the presence of the O vi doublet and the ratio of doublet

line strength, independent of the presence of other transitions. In the redshift range of each

detected O vi absorber, we have also searched for the presence of H i absorption and other

ionized species, where we find 80 H i absorption systems (25 have no accompanying O vi

absorption), for a total of 88 absorption line systems. 50 absorbing systems also exhibit at

least one other metal ion. Our study focuses on O vi absorption as it plays an important

role in the baryon and metal budgets of gas, provides observational windows on intergalactic

metal enrichment, and traces energetic galaxy and IGM interactions.

For each absorption system, we distinguish between absorption features that are well-

described as single-phase absorbers and absorbers that arise from multiphase absorption.

We interpret multiphase absorption profiles as physically distinct gas structures within an

– 20 –

absorbing cloud, where each ion exists at the same velocity. Since the majority of our

absorbers present well-aligned O vi and H i absorption profiles, we believe that the majority

of our systems arise in which both gas phases are cospatial, which is indicative of systems

that contain a significant fraction of their baryons within cooler, photoionized gas.

Through use of the Doppler-parameters of O vi and H i, we derive both the temperature

of the absorbing gas and the non-thermal contribution to the Doppler parameter, bnt. For

well-aligned O vi and H i components, we find gas temperatures in the range T < 105 K,

below which O vi is expected to be found via collisional ionization. These derived tempera-

tures lead us to believe that the majority of O vi absorbers contain a significant fraction of

their baryons within cooler, photoionized gas.

Our main results can be summarized as follows:

1. We find no significant correlation between the measured metallicity [Z/H] distribution

with NHI. This indicates that there is not an onset of multiphase ionized structure in

stronger absorbers.

2. From CLOUDY modeling, the modeled temperature (assuming single-phase gas struc-

ture, which is a fair assumption for the majority of our systems) indicates that the

absorption systems are better described with photoionization (T ∼ 104 K) as com-

pared to collisional ionization. This is in agreement with results from Voigt profile fits

to all absorption features.

3. Our median metallicity, acquired through CLOUDY ionization models, is [Z/H] =

0.3, two orders of magnitude higher compared to measurements of intervening systems

(Simcoe et al. 2004). This indicates a metal-enhancement in the highly ionized field

associated with our systems compared with the unassociated counterparts. Even if

we adopt the most conservative approach of estimating the metallicity, our median

metallicity is still [Z/H] = 0.

4. Our results from CLOUDY models are consistent with the theoretical modeling of

Oppenheimer & Schaye (2013), where metal-enriched, H i-deficit absorption systems

are common and expected in the proximity zone around quasars or near quasars that

have recently turned on, enhancing high-ionization transitions while reducing low-

ionization states.

5. Effects of partial covering factors on our O vi absorption systems are found toward

31 of 61 systems where both O vi doublet lines are observable. The high-number of

absorbers exhibiting partial covering factors leads us to believe that our absorbers are

located in the vicinity their quasars. The large number of N v features also support the

– 21 –

location of our absorbing systems occurring in the vicinity of the host quasar, exposed

to hardened radiation fields.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which

is operated by the Jet Propulsion Laboratory, California Institute of Technology, under

contract with NASA. Funding for SDSS and SDSS-II has been provided by the Alfred P.

Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S.

Department of Energy, the National Aeronautics and Space Administration, the Japanese

Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for

England. The SDSS Web Site is http://www.sdss.org/. Knock knock! Who’s there?! Cows

go. Cows go who? No, silly; cows go moo!

REFERENCES

Asplund, M., Grevesse, N., Sauval, A.J., & Scott, P. 2009, ARA&A, 47, 481

Barai, P., Martel, H., & Germain, J. 2011, ApJ, 727, 54

Bertone S., Schaye J., Rooth C.M., Dalla Vecchia C., Theuns T., Wiersma, R.P.C. 2010, MNRAS, 408, 1120

Burles, S. & Tytler, D. 1996, ApJ, 460, 584

Cavaliere, A., Lapi, A., & Menci, N. 2002, ApJ, 581, L1

Cen, R. & Ostriker, J.P. 1999, ApJ, 514, 1

Chen, H.-W., & Prochaska, J.X. 2000, ApJ, 543, L9

Collins, J.A., Shull, J.M., & Giroux, M.L. 2004, ApJ, 605, 216

Danforth, C.W. & Shull, J.M. 2005, ApJ, 624, 555

Danforth, C.W., Shull, J.M., Rosenberg, J.L., & Stocke, J.T. 2006, ApJ, 640, 716

Danforth, C.W. & Shull, J.M. 2008, ApJ, 679, 194

Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604

Elvis, M. 2000, ApJ, 545, 63

Ferland, G.J, Korista, K.T., Verner, D.A., Ferguson, J.W., Kingdon, J.B., & Verner, E.M. 1998, PASP, 110,

761

Fechner, C. & Richter, P. 2009, A&A, 496, 31

Fox, A.J., Bergeron, J., & Petitjean, P. 2008, MNRAS, 388, 1557

– 22 –

Fox, A.J. 2011, ApJ, 730, 58

Fukugita, M., Hogan, C.J., & Peebles, P.J.E. 1998, ApJ, 503, 518

Furlanetto, S.R., Schaye, J., Springel, V., & Hernquist, L. 2004, ApJ, 606, 221

Ganguly, R., Sembach, K.R., Tripp, T.M., Savage, B.D., & Wakker, B.P. 2006, ApJ, 645, 868

Green, J. et al. 2012, ApJ, 744, 60

Haiman, Z. & Rees, M.J. 2001, ApJ, 556, 87

Hamann, F & Ferland, G.J. 1999, ARA&A, 37, 487

Heckman, T.M., Lehnert, M.D., Miley, G.K., & van Breugel, W. 1991a, ApJ, 381, 373

Heckman, T.M., Miley, G.K., Lehnert, M.D., & van Breugel, W. 1991b, ApJ, 370, 78

Heckman, T.M. et al. 2002, ApJ, 577, 691

Henry, R.B.C., Edmunds, M.G., & Koppen, J. 2000, ApJ, 541, 660

Hopkins, P.F. & Elvis, M. 2010, MNRAS, 401, 7

Howk, J.C., Ribaudo, J.S., Lehner, N., Prochaska, J.X., & Chen, H.-W. 2009, MNRAS, 396, 1875

Jahnke, K. & Wisotzki, L. 2003, MNRAS, 346, 304

Keres, D., & Hernquist, L. 2009, ApJ, 700, L1

Kinkhabwala, A., Sako, M., Behar, E., Kahn, S.M., Paerels, F., Brinkman, A.C., Kaastra, J.S., Gu, M.F.,

& Liedahl, D.A. 2002, ApJ, 575, 732

Komatsu, E., et al. 2011, ApJS, 192, 18

Krongold, Y., Nicastro, F., Elvis, M., Brickhouse, N., Binette, L., Mathur, S., Jimenez-Bailon, E. 2007, ApJ,

659, 1022

Lanzetta, K.M., Bowen, D.V., Tytler, D., & Webb, J.K. 1995, ApJ, 442, 538

Lehner, N., Prochaska, J.X., Kobulnicky, H.A., Cooksey, K.L., Howk, J.C., Williger, G.M., & Cales, S.L.

2009, ApJ, 694, 734

Mathews, W.G. & Madau, G.J. 1987, ApJ, 323, 456

Morton, D.C. 1991, ApJS, 77, 119

Narayanan, D., Hamann, F., Barlow, T., Burbidge, E.M., Cohen, R.D., Junkkarinen, V., Lyons, R. 2004,

ApJ, 601, 715

Nestor, D., Hamann, F., & Rodriguez, H.P. 2008, MNRAS, 386, 2055

– 23 –

Oppenheimer, B.D. & Dave, R. 2009, MNRAS, 395, 1875

Oppenheimer, B.D. & Schaye, J. 2013, arXiv:1303.0019

Petitjean, P. & Srianand, R. 1999, A&A, 345, 73

Pettini, M. et al. 2001, ApJ, 554, 981

Prochaska, J.X., Weiner, B., Chen, H.-W., Mulchaey, J. & Cooksey, K. 2011, ApJ, 740, 91

Rauch, M. 1998, ARA&A, 36, 267

Rupke, D.S.N. & Veilleux, S. 2013, ApJ, 775, L15

Sembach, K.R. & Savage, B.D. 1992, ApJS, 83, 147

Sembach, K.R., Wakker, B.P., Savage, B.D., Richter, P., Meade, M., Shull, J.M., Jenkins, E.B., Sonneborn,

G., & Moos, H.W. 2003, ApJS, 146, 165

Sembach, K.R., Tripp, T.M., Savage, B.D., & Richter P. 2004, ApJS, 155, 351

Serber, W., Bahcall, N., Menard, B., & Richards, G. 2006, ApJ, 643, 68

Shull, J.M., Tumlinson, J., & Giroux, M.L. 2003, ApJ, 594, L107

Simcoe, R.A., Sargent, W.L.W., & Rauch, M. 2004, ApJ, 606, 92

Stocke, J.T, Penton, S.V., Danforth, C.W., Shull, J.M., Tumlinson, J., & McLin, K. 2006, ApJ, 641, 217

Sutherland, R.S. & Dopita, M.A. 1993, ApJS, 88, 253

Tepper-Garcıa, T., Richter, P., Schaye, J., Booth, C.M., Dalla Vecchia, C., Theuns, T., & Wiersma, R.P.C.

2011, MNRAS, 413, 190

Thom, C. & Chen, H. 2008, ApJ, 683, 22

Thom, C. & Chen, H. 2008a, ApJS, 179, 37

Tilton, E.M., Danforth, C.W., Shull, J.M., & Ross, T.L. 2012, ApJ, 759, 112

Tripp, T.M., & Savage, B.D. 2000, ApJ, 542, 42

Tripp, T.M., Sembach, K.R., Bowen, D.V., Savage, B.D., Jenkins, E.B., Lehner, N., & Richter, P. 2008,

ApJS, 177, 39

Tumlinson, J., Shull, J.M., Giroux, M.L., & Stocke, J.T. 2005, ApJ, 620, 95

Tytler, D. 1982, Nature, 298, 427

Wakker, B.P. & Savage, B.D. 2009, ApJS, 182, 378

Weiner, B.J. et al. 2009, ApJ, 692, 187

– 24 –

Wolfe, A.M., Gawiser, E., & Prochaska, J.X. 2005, ARA&A, 43, 861

Yuan, Q., Green, R.F., Brotherton, M., Tripp, T.M., Kaiser, M.E., & Kriss, G.A. 2002, ApJ, 575, 687

This preprint was prepared with the AAS LATEX macros v5.2.

– 25 –

Fig. 1.— A view of the continuum-normalized absorption line spectra (histograms) for all

absorbers in our survey. Absorption profiles are plotted in the velocity frame of the quasar

(v = 0 km s−1 at zquasar). Unassociated absorption features are marked with an x. The

vertical dotted line marks the central velocity of each absorption system, listed in Table 2,

where the central velocity is with respect to the O vi absorption lines or the H i lines for

systems not detected in the O vi doublet. For systems not detected in the O vi doublet, we

only show the λ1032 line used in determining NOVI,3σ. All absorption lines shown in these

plots are listed in Table 1.

– 26 –

Fig. 2.— cont’d.

– 27 –

Fig. 3.— cont’d.

– 28 –

Fig. 4.— cont’d.

– 29 –

Fig. 5.— cont’d.

– 30 –

Fig. 6.— cont’d.

– 31 –

Fig. 7.— cont’d.

– 32 –

Fig. 8.— cont’d.

– 33 –

Fig. 9.— cont’d.

– 34 –

Fig. 10.— cont’d.

– 35 –

Fig. 11.— cont’d.

– 36 –

Fig. 12.— cont’d.

– 37 –

Fig. 13.— cont’d.

– 38 –

Fig. 14.— cont’d.

– 39 –

Fig. 15.— cont’d.

– 40 –

Fig. 16.— cont’d.

– 41 –

Fig. 17.— cont’d.

– 42 –

Fig. 18.— cont’d.

– 43 –

Fig. 19.— cont’d.

– 44 –

Fig. 20.— cont’d.

– 45 –

Fig. 21.— cont’d.

– 46 –

Fig. 22.— cont’d.

– 47 –

Fig. 23.— COS G130M+G160M spectrum of the quasar J1103+414. The vertical dotted line

at 1704 A indicates the Lyα emission at the systemic redshift of the quasar (z = 0.40310).

This is our richest absorption system with 9 absorption systems detected in this sight line.

– 48 –

Fig. 24.— Top: Redshift distribution of all 69 sight lines (black solid line), split into bins

by number of associated absorbers detected per sight line. The red histogram represents

sight lines with one absorber, dark blue represent the sight lines with two absorbers, and

the cyan histogram represents sight lines with three or more absorbers present. The orange

histogram is the sum of all absorbers in a given redshift bin, where the number represents

the percentage of sight lines with an absorber detected per redshift bin. Bottom: The same

as above, except only for absorbers detected in O vi absorption.

– 49 –

Fig. 25.— Integrated column densities for the O vi λλ1032, 1038 doublet, where λ1032 is

shown in black and λ1038 is shown in blue. In the top panel, there are no saturation effects,

as indicated by the good agreement of the Na(v) profiles. In the bottom panel, saturation

effects are occurring, resulting in the weaker line having a larger Na(v) profile.

– 50 –

Fig. 26.— A view of the continuum-normalized absorption line spectra (histograms) for

J1117+2634 where the pink line represents the profile fits for the λ1032 line (top panel)

and λ1038 line (bottom panel), plotted in the velocity frame of the quasar. We determine

this line exhibits partial covering because profile fitting overshoots the observed flux of the

stronger line (λ1032) while undershooting the observed flux of the weaker line (λ1038).

– 51 –

Fig. 27.— The Doppler parameter distribution for O vi as a function of H i for all absorption

components with both O vi and H i absorption. The lower dotted line indicates the lower

limit to temperature, when all non-thermal contributions are zero. Solid circles represent

systems that we define as well-aligned and open circles represent systems that do not meet

the qualification for our definition of a well-aligned system. The gray error bars represent

the 1σ errors.

– 52 –

Fig. 28.— Examples of some best-fit CLOUDY data to our observed data points, showing

the column density as a function of ionization parameter, U . Downward pointing arrows

represent upper limits (non-detections).

–53

Fig. 29.— Top Left: Histogram of the number of O vi absorbers in each ∆ [Z/H] = 0.25 bin. The gray histogram

represents the metallicity of the detected absorbers, the blue represents upper limit values and the red represents lower

limit values. Bottom Left: Histogram of the number of O vi absorbers in each ∆ U = 0.25 bin. Top Right: Same as the

top left, except for the conservative estimates from CLOUDY models. Bottom Right: Same as the bottom left, except

for the conservative estimates from CLOUDY models.

–54

Fig. 30.— Top Left: Histogram of the number of O vi absorbers in each ∆ [Z/H] = 0.25 bin for sources exhibiting

partial covering factors. The gray histogram represents the metallicity of the detected absorbers, the blue represents

upper limit values and the red represents lower limit values. Bottom Left: Histogram of the number of O vi absorbers

in each ∆ [Z/H] = 0.25 bin for sources exhibiting full covering factors. Top Right: Histogram of the number of O vi

absorbers in each ∆ U = 0.25 bin for sources exhibiting partial covering factors. Bottom Right: Histogram of the

number of O vi absorbers in each ∆ U = 0.25 bin for sources exhibiting full covering factors.

– 55 –

Fig. 31.— Top: Histogram of the number of O vi absorbers in each ∆ [Z/H] = 0.25 bin.

The gray histogram represents the metallicity of the absorbers not detected in N v while

the green hatched histogram represents absorbers that are also detected in N v absorption.

Bottom: Histogram of the number of O vi absorbers in each ∆ U = 0.25 bin.

– 56 –

Fig. 32.— Top: Histogram of the velocity offsets between the strongest component in the

O vi and H i absorption profiles for 54 systems detected in both O vi and H i absorption.

Bottom: Histogram of the O vi column density distribution for the systems detected in O vi

absorption. Non-detections are not shown.

–57

Fig. 33.— Top Left: The metallicity [Z/H] as a function of the velocity offset from the host quasar. The location

of the black circle represents the velocity of the strongest component in the absorber. The red arrows represent low-

limit values and the blue-arrows represent upper limit values. The vertical gray bars represent the 1σ errors and the

horizontal black bars represent the FWHM of the absorption system (km s−1). Bottom Left: The O vi column density

as a function of the velocity offset from the host quasar. Top Right: The NHI/NOVI ratio as a function of the velocity

offset from the host quasar. The location of the black circle represents the velocity of the strongest component in the

absorber. The red arrows represent low-limit values and the blue-arrows represent upper limit values. Bottom Right:

The H i column density as a function of the velocity offset from the host quasar.

– 58 –

Fig. 34.— Top: The NHI/NOVI ratio as a function of the velocity difference between O vi and

H i absorbers. Filled circles represent systems that are well-aligned (vHI − vOVI ≤ 2σ(∆v),

where σ(∆v) =√

σ2HI + σ2

OVI + σ2wave) and open circles represent systems not well-aligned.

The gray bars represent the 1σ errors. Only systems detected in both O vi and H i absorption

are shown. Bottom: The metallicity [Z/H] as a function of the velocity difference between

O vi and H i absorbers. Downward pointing blue arrows represent systems with an upper

limit to the metal abundance value.

–59

Fig. 35.— Top Left: The metallicity [Z/H] as a function of the redshift of the host quasar. The gray bars represent the

1σ errors, the upward pointing red arrows represent lower limits (non-detections in H i) and the downward pointing

blue arrows represent upper limits (non-detections in metals). Bottom Left: The O vi column density as a function of

the redshift of the host quasar. Top Right: The H i column density as a function of the redshift of the host quasar.

Bottom Left: The NHI/NOVI ratio as a function of the redshift of the host quasar.

–60

Fig. 36.— Top Left: The H i column density as a function of the metallicity [Z/H] of the absorbing system. The gray

bars represent the 1σ errors, the red arrows represent lower limits, and the blue errors represent upper limits. Bottom

Left: The H i column density as a function of the metallicity [Z/H] of the absorbing system. Top Right: The ionization

parameter U as a function of the metallicity [Z/H] of the absorbing system. Bottom Right: The NHI/NOVI ratio as a

function of the metallicity [Z/H] of the absorbing system.

–61

Fig. 37.— Top Left: The metallicity abundance [Z/H] as a function of the FWHM (km s−1) of the O viλ 1032 absorber.

The gray bars represent the 1σ errors, the red arrows represent lower limits, and the blue errors represent upper limits.

Bottom Left: NHI/NOVI ratio as a function of width in km s−1 of the O viλ 1032 absorber. Top Right: The velocity

difference between O vi and H i absorbers as a function of width in km s−1 of the O viλ 1032 absorber. Bottom Right:

The velocity offset from the host quasar of the absorber as a function of width in km s−1 of the O viλ 1032 absorber.

– 62 –

Fig. 38.— Comparison of the [Z/H] distribution of the data acquired from survival analysis

(including detections, lower, and upper limits) for the entire sample (solid line). The dashed

line represents those systems that exhibit partial covering and the dotted line represents

systems that do not exhibit partial covering.

– 63 –

Table 1. ISM Diagnostic Absorption Lines

Ion λ f

(A)

H i Lyα 1215.670 0.4164

Lyβ 1025.722 0.07914

Lyγ 972.537 0.0290

Lyδ 949.743 0.0139

Lyǫ 937.803 0.0078

Lyζ 930.748 0.00481

Lyη 926.223 0.003185

Lyθ 923.148 0.00217

Lyι 920.961 0.001606

C ii 1036.337 0.118

Si ii 1260.422 1.18

Si iii 1206.500 1.63

C iii 977.020 0.757

O iii 832.927 0.107

C iv 1548.204 0.190

1550.781 0.0948

O iv 787.711 0.111

Si iv 1393.760 0.513

1402.773 0.254

N v 1238.821 0.156

1242.804 0.077

S v 786.480 1.42

O vi 1031.926 0.1325

1037.616 0.0658

S vi 933.378 0.445

944.523 0.220

Note. — Columns list the (1) ion,

(2) rest-frame wavelength of the ion,

and (3) oscillator strength, f , of the

transition from Morton (1991).

– 64 –

Table 2. Sources

Source Short Name R.A. Dec. z vOVI Survey

(J2000) (J2000) (km s−1)

SDSS J001224.03−102226.3 J0012−1022 00 12 24.01 −10 22 26.5 0.22819 −4479a, 325, 4492a D

SDSS J004222.29−103743.6 J0042−1037 00 42 22.29 −10 37 43.8 0.42479 −4320a, −640a H

SDSS J015530.01−085704.0 J0155−0857 01 55 30.02 −08 57 04.0 0.16443 −434 D

SDSS J021218.32−073719.7 J0212−0737 02 12 18.32 −07 37 19.8 0.17392 12 D

SDSS J022614.46+001529.7 J0226+0015 02 26 14.46 +00 15 29.7 0.61564 −4483 H

SDSS J024250.85−075914.2 J0242−0759 02 42 50.85 −07 59 14.2 0.37778 −2062a D

SDSS J025937.46+003736.2 J0259+0037 02 59 37.46 +00 37 36.3 0.53531 −4294 D

SDSS J040148.97−054056.6 J0401−0540 04 01 48.98 −05 40 56.5 0.57089 · · · H

SDSS J080359.22+433258.4 J0803+4332 08 03 59.23 +43 32 58.4 0.44871 −4227, −70 H

SDSS J080908.13+461925.5 J0809+4619 08 09 08.13 +46 19 25.6 0.65872 −103, 92 D

SDSS J082024.21+233450.4 J0820+2334 08 20 24.21 +23 34 50.4 0.47056 −3961a, −3181, −1492a H

SDSS J082633.51+074248.3 J0826+0742 08 26 33.51 +07 42 48.3 0.31066 · · · D

SDSS J091029.75+101413.5 J0910+1014 09 10 29.75 +10 14 13.6 0.46277 · · · H

SDSS J091235.42+295725.4 J0912+2957 09 12 35.42 +29 57 25.4 0.30558 −65a, 4016 D

SDSS J092554.43+453544.4 J0925+4535 09 25 54.43 +45 35 44.4 0.32989 −4369a D

SDSS J092554.70+400414.1 J0925+4004 09 25 54.70 +40 04 14.1 0.47168 · · · H

SDSS J092837.97+602521.0 J0928+6025 09 28 37.98 +60 25 21.0 0.29589 −244 H

SDSS J092909.79+464424.1 J0929+4644 09 29 09.79 +46 44 24.0 0.23998 −860a D

SDSS J093518.19+020415.5 J0935+0204 09 35 18.19 +02 04 15.5 0.64912 · · · H

SDSS J094331.61+053131.4 J0943+0531 09 43 31.61 05 31 31.4 0.56433 576 H

SDSS J094621.26+471131.3 J0946+4711 09 46 21.26 +47 11 31.3 0.23022 · · · D

SDSS J094733.22+100508.8 J0947+1005 09 47 33.21 +10 05 08.7 0.13954 −3547, −1279 D

SDSS J094952.91+390203.9 J0949+3902 09 49 52.91 +39 02 03.9 0.36619 100 D

SDSS J095000.73+483129.3 J0950+4831 09 50 00.73 +48 31 29.3 0.58946 −1824 H

SDSS J095915.65+050355.1 J0959+0503 09 59 15.65 +05 03 55.1 0.16263 −3341a, −2242 D

SDSS J100102.57+594414.4 J1001+5944 10 01 02.55 +59 44 14.3 0.74749 · · · D

SDSS J100902.06+071343.8 J1009+0713 10 09 02.06 +07 13 43.8 0.45652 −937, −770, −414, −214 H

PG1049−005 10 51 51.44 −00 51 17.7 0.3599 −3884 D

SDSS J105945.23+144142.9 J1059+1441 10 59 45.23 +14 41 42.9 0.63171 −2554 D

SDSS J105958.82+251708.8 J1059+2517 10 59 58.82 +25 17 08.8 0.66278 323 D

SDSS J110312.94+414154.9 J1103+4141 11 03 12.93 +41 41 54.9 0.4031 −4694, −2203, −1804, −1490, D

−1170, −728, −602, −468, 1843 D

SDSS J110406.94+314111.4 J1104+3141 11 04 06.94 +31 41 11.4 0.43572 −3706a, −168 D

SDSS J111239.11+353928.2 J1112+3539 11 12 39.11 +35 39 28.2 0.63597 · · · H

SDSS J111754.32+263416.6 J1117+2634 11 17 54.31 +26 34 16.6 0.42229 179 D

SDSS J112114.21+032546.8 J1121+0325 11 21 14.22 +03 25 46.7 0.15199 · · · D

SDSS J113327.78+032719.1 J1133+0327 11 33 27.78 +03 27 19.1 0.52452 −4326 H

SDSS J113457.63+255527.9 J1134+2555 11 34 57.62 +25 55 27.9 0.70994 · · · D

SDSS J115758.72−002220.7 J1157−0022 11 57 58.72 −00 22 20.8 0.26025 −822, −440a H

PG1202+281 12 04 42.11 +27 54 11.8 0.1653 −79a D

SDSS J120720.99+262429.1 J1207+2624 12 07 20.99 +26 24 29.1 0.32249 −581 D

SDSS J121037.56+315706.0 J1210+3157 12 10 37.56 +31 57 06.0 0.38937 90 D

SDSS J121114.56+365739.5 J1211+3657 12 11 14.56 +36 57 39.5 0.17108 −608a D

SDSS J122035.10+385316.4 J1220+3853 12 20 35.10 +38 53 16.4 0.37665 · · · H

SDSS J123304.06-003134.2 J1233−0031 12 33 04.05 −00 31 34.1 0.47095 −141a H

– 65 –

Table 2—Continued

Source Short Name R.A. Dec. z vOVI Survey

(J2000) (J2000) (km s−1)

SDSS J123335.08+475800.5 J1233+4758 12 33 35.07 +47 58 00.4 0.38223 232 H

SDSS J123604.02+264135.9 J1236+2641 12 36 04.02 +26 41 35.9 0.20915 1 D

SDSS J124154.02+572107.3 J1241+5721 12 41 54.02 +57 21 07.3 0.58347 · · · H

SDSS J124511.25+335610.1 J1245+3356 12 45 11.25 +33 56 10.1 0.7117 −3872, 368, 1191a H

SDSS J132222.68+464535.2 J1322+4645 13 22 22.68 +46 45 35.2 0.37487 · · · H

SDSS J132704.13+443505.0 J1327+4435 13 27 04.13 +44 35 05.0 0.3304 −1821a, −187 D

SDSS J133045.15+281321.4 J1330+2813 13 30 45.15 +28 13 21.4 0.41731 · · · H

SDSS J133053.28+311930.6 J1330+3119 13 30 53.27 +31 19 30.5 0.24232 −2324a, −854a, 586 D

SDSS J134206.57+050523.9 J1342+0505 13 42 06.56 +05 05 23.8 0.26392 −149, 247 D

SDSS J134231.22+382903.4 J1342+3829 13 42 31.22 +38 29 03.4 0.17189 · · · D

SDSS J134246.89+184443.6 J1342+1844 13 42 46.89 +18 44 43.6 0.3832 −3399a, −700, −71 D

SDSS J134251.61−005345.4 J1342−0053 13 42 51.60 −00 53 45.3 0.32654 · · · H

SDSS J135625.54+251519.9 J1356+2515 13 56 25.55 +25 15 23.7 0.16404 −4841, −242 D

SDSS J135712.61+170444.1 J1357+1704 13 57 12.61 +17 04 44.1 0.1505 −1899a, −787 D

SDSS J143511.53+360437.2 J1435+3604 14 35 11.53 +36 04 37.2 0.42995 −327 H

SDSS J144511.28+342825.4 J1445+3428 14 45 11.28 +34 28 25.4 0.69723 143 H

SDSS J151428.64+361957.9 J1514+3619 15 14 28.64 +36 19 57.9 0.69518 · · · H

SDSS J152139.66+033729.2 J1521+0337 15 21 39.66 +03 37 29.2 0.1265 −376 D

SDSS J154553.48+093620.5 J1545+0936 15 45 53.48 +09 36 20.5 0.665 −4419, −302 D

SDSS J155048.29+400144.8 J1550+4001 15 50 48.29 +40 01 44.9 0.49725 −1007a, −154 H

SDSS J155504.39+362847.9 J1555+3628 15 55 04.39 +36 28 48.0 0.71409 · · · H

SDSS J161649.42+415416.3 J1616+4154 16 16 49.42 +41 54 16.3 0.4412 · · · H

SDSS J161711.42+063833.4 J1617+0638 16 17 11.42 +06 38 33.4 0.22945 · · · H

SDSS J161916.54+334238.4 J1619+3342 16 19 16.54 +33 42 38.4 0.4716 −4402, −4034, −3789, 9 H

SDSS J225738.20+134045.4 J2257+1340 22 57 38.20 +13 40 45.4 0.59456 4712a H

Note. — Columns list the (1) SDSS source name, (2) abbreviated source name used throughout the paper, (3) Right

Ascension and (4) Declination, in J2000 coordinates, (5) spectroscopic redshift of the quasar, (6) the central velocity of each

associated absorption systems detected with the O vi λλ1032, 1038 doublet with respect to the redshift of the quasar, and

(7) the survey the source comes from, COS-Halos (H) or COS-Dwarfs (D).

a – listed velocity is for H i absorbing systems not detected with the O vi λλ1032, 1038 doublet.

– 66 –

Table 3. Integrated Values for Absorption Systems Detected in O vi

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

J0012−1022 1 H i 1215.67 −4621, −4386 264(18) 13.88(10)

1025.72 −4601, −4412 152(25) 14.46(20)

1 O vi 1031.93 −4621, −4386 <26 <13.54

1037.62 −4621, −4386 <25 <13.95

1 C iii 977.02 −4621, −4386 <23 <12.81

2 H i 1215.67 27, 524 1378(30) 14.89(5)

1025.72 88, 493 965(27) 15.46(5)

972.54 156, 483 515(32) 15.56(5)

949.74 180, 449 397(39) 15.74(7)

937.8 214, 388 220(44) 15.4(2)

930.75 279, 408 181(46) 15.7(3)

926.23 253, 369 166(46) 15.7(3)

2 O vi 1031.93 61, 592 971(33) 15.17(4) 1

1037.62 112, 381 491(33) 15.10(6)

2 C ii 1036.34 279, 354 64(13) 13.83(12)

2 C iii 977.02 173, 527 602(32) 14.24(5)

2 Si ii 1260.42 241, 374 184(24) 13.24(8)

2 Si iii 1206.5 235, 412 291(9) 13.37(3)

2 Si iv 1393.76 276, 391 265(33) 13.69(10)

1402.77 282, 354 120(32) 13.64(18)

2 N v 1238.82 218, 395 287(25) 14.30(6)

1242.8 235, 364 163(17) 14.29(6)

3 H i 1215.67 4351, 4605 133(12) 13.43(8)

1025.72 4388, 4592 53(33) 13.8(1.1)

3 O vi 1031.93 4351, 4605 <21 <13.64

1037.62 4351, 4605 <19 <13.93

3 C iii 977.02 4351, 4605 <170 <13.31

J0042−1037 1 H i 1215.67 −4370, −4209 284(11) 13.89(12)

1025.72 −4385, −4209 65(19) 14.00(17)

1 O vi 1031.93 −4370, −4209 <17 <13.14

1037.62 −4370, −4209 <17 <13.60

1 C iii 977.02 −4370, −4209 <19 <12.49

2 H i 1215.67 −712, −599 >137 >13.54

1025.72 −653, −519 178(13) 14.55(4)

972.54 −681, −565 143(15) 14.94(15)

2 O vi 1031.93 −712, −599 <12 <13.00

1037.62 −712, −599 <12 <13.45

2 C iii 977.02 −712, −599 <16 <12.37

J0155−0857 1 H i 1215.67 −633, −136 1330(29) 14.78(6)

1025.72 −609, −129 1003(30) 15.49(5)

1 O vi 1031.93 −524, −68 926(24) 15.21(5) 0.8

1037.62 −523, −68 939(25) 15.56(5)

1 C iii 977.02 −552, −192 607(61) 14.17(8)

1 Si iii 1206.5 −500, −119 207(19) 13.10(4)

1 Si iv 1393.76 −489, −333 283(45) 13.67(10)

– 67 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

1402.77 −476, −337 284(27) 13.99(7)

1 N v 1238.82 −585, −126 972(27) 14.98(4)

1242.8 −544, −136 812(22) 15.18(3)

J0212−0737 1 H i 1215.67 −299, 174 1324(29) 14.80(7)

1025.72 −242, 156 721(21) 15.27(6)

972.54 −270, 202 533(58) 15.53(6)

1 O vi 1031.93 −298, 266 1288(38) 15.37(6) 0.5

1037.62 −347, 238 1236(54) 15.6(2)

1 Si iii 1206.5 −211, 14 278(16) 13.23(4)

J0226+0015 1 H i 1025.722 −4602, −4437 174(26) 14.50(8)

972.54 −4629, −4441 745(23) 14.58(12)

1 O iv 787.71 −4539, −4425 80(8) 14.26(5)

1 O vi 1031.93 −4511, −4412 73(26) 13.93(25) 1

1037.62 −4514, −4430 22(6) 13.6(5)

1 C iii 977.02 −4579, −4432 72(18) 13.16(8)

J0242−0759 1 H i 1215.67 −2181, −2008 260(18) 13.87(7)

1025.72 −2212, −1960 148(17) 14.17(10)

1 O vi 1031.93 −2181, −2008 <13 <13.02

1037.62 −2181, −2008 <12 <13.59

1 Si iii 1206.5 −2181, −2008 <12 <12.35

J0259+0037 1 H i 1025.72 −4370, −4279 72(11) 14.07(10)

1 O vi 1031.93 −4359, −4254 130(19) 14.15(10) No λ1038

1 C iii 977.02 −4359, −4254 <14.1 <12.35

J0803+4332 1 H i 1215.67 −4416, −4096 920(38) 14.52(6)

1025.72 −4412, −4119 477(25) 15.11(6)

972.54 −4247, −4135 284(23) 15.25(5)

949.74 −4269, −4169 87(16) 14.99(11)

1 O vi 1031.93 −4395, −4202 259(17) 14.51(7) 1

1037.62 −4395, −4202 213(18) 14.66(5)

1 C iii 977.02 −4362, −4160 282(26) 13.90(7)

2 H i 1215.67 −541, 20 1473(39) 14.81(5)

1025.72 −370, 54 733(28) 15.25(4)

972.54 −330, 24 383(28) 15.34(5)

949.74 −306, 14 190(30) 15.32(8)

2 O vi 1031.93 −386, 64 786(27) 15.11(4) 1

1037.62 −386, 18 644(27) 15.29(4)

2 C iii 977.02 −408, 32 138(25) 13.40(20)

J0809+4619 1 H i 1025.72 −177, −7 342(13) 14.92(4)

972.54 −167, −17 175(19) 14.99(6)

1 O vi 1031.93 −190, −17 >386 >14.87 1

1037.62 −197, −17 408(20) 15.16(6)

1 C iii 977.02 −177, −10 174(31) 13.58(10)

2 H i 1025.72 37, 160 33(13) 13.74(18)

2 O vi 1031.93 61, 168 316(10) 14.79(6) 0.7

1037.62 37, 160 192(13) 14.70(6)

– 68 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

2 C iii 977.02 132, 213 48(13) 12.98(15)

J0820+2334 1 H i 1215.67 −4036, −3855 274(26) 13.88(5)

1025.72 −4104, −4016 69(10) 14.06(10)

1 O vi 1031.93 −4036, −3855 <17 <13.11

1037.62 −4036, −3855 <16 <13.77

1 C iii 977.02 −4054, −3856 175(12) 13.56(5)

2 H i 1215.67 −3336, −3032 594(32) 14.35(6)

1025.72 −3297, −3100 220(15) 14.61(4)

972.54 −3272, −3013 119(19) 14.76(11)

949.74 −3229, −3159 26(8) 14.44(22)

2 O vi 1031.93 −3324, −3138 111(15) 14.01(6) 0.65

1037.62 −3238, −3154 34(9) 13.78(15)

2 C iii 977.02 −3211, −3129 29(10) 12.74(16)

3 H i 1215.67 −1544, −1412 193(28) 13.68(11)

1025.72 −1524, −1350 111(14) 14.23(18)

3 O vi 1031.93 −1544, −1412 <13 <13.22

1037.62 −1544, −1412 <15 <13.45

3 C iii 977.02 −1544, −1412 <13 <12.32

J0912+2957 1 H i 1215.67 −249, 54 266(31) 13.83(7)

1025.72 −109, 23 55(20) 14.02(18)

1 O vi 1031.93 −249, 54 <29 <13.37

1037.62 −249, 54 <30 <13.97

1 C iii 977.02 −249, 54 <50 <13.15

2 H i 1215.67 4079, 4220 245(39) 13.86(12)

2 O vi 1031.93 3961, 4079 150(23) 14.30(10) 1

1037.62 3934, 4061 130(36) 14.50(20)

2 C iii 977.02 3961, 4079 <18 <12.55

J0925+4535 1 H i 1215.67 −4527, −4266 485(23) 14.28(5)

1025.72 −4502, −4228 248(11) 14.82(11)

972.54 −4502, −4228 <321 <15.43

949.74 −4466, −4285 150(11) 15.31(15)

1 O vi 1031.93 −4527, −4266 <66 <13.77

1037.62 −4527, −4266 <18 <13.77

1 C iii 977.02 −4416, −4344 37(5) 12.88(15)

J0928+6025 1 H i 1215.67 −371, −184 177(13) 13.59(4)

1 O vi 1031.93 −337, −197 239(19) 14.49(6) 0.7

1037.62 −337, −190 193(18) 14.64(6)

1 C iii 977.02 −238, −66 143(24) 13.49(9)

J0929+4644 1 H i 1215.67 −975, −785 154(9) 13.55(3)

1025.72 −914, −755 28(8) 13.64(20)

1 O vi 1031.93 −975, −785 <13 <13.03

1037.62 −975, −785 <14 <13.33

1 Si iii 1206.5 −975, −785 <12 <11.74

J0943+0531 1 H i 1025.72 493, 629 368(39) 14.72(12)

972.54 476, 650 106(29) 14.76(14)

– 69 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

1 O vi 1031.93 541, 694 291(49) 14.45(15) 0.7

1037.62 541, 660 199(40) 14.62(15)

J0947+1005 1 H i 1215.67 −3661, −3387 277(15) 13.79(3)

1 O vi 1031.93 −3684, −3366 271(22) 14.44(4) 0.8

1037.62 −3684, −3366 132(24) 14.40(8)

1 Si iii 1206.5 −3684, −3366 <20 <11.98

2 H i 1025.72 −1383, −1195 159(11) 13.54(4)

2 O vi 1031.93 −1361, −1193 105(12) 13.98(6) 0.3

1037.62 −1361, −1193 135(10) 14.40(4)

2 N v 1238.82 −1390, −1218 49(15) 13.41(18)

1242.8 −1258, −1229 34(12) 13.6(2)

J0949+3902 1 H i 1215.67 10, 275 720(19) 14.56(9)

1025.72 24, 228 395(12) 15.06(5)

972.54 68, 211 228(10) 15.20(4)

949.74 78, 197 139(15) 15.27(6)

937.8 92, 190 94(11) 15.30(7)

930.75 34, 224 89(11) 15.45(10)

926.23 109, 221 59(9) 15.44(12)

920.96 99, 187 29(8) 15.43(14)

1 O vi 1031.93 37, 228 261(11) 14.46(3) 0.3

1037.62 37, 228 115(12) 14.35(6)

1 C iii 977.02 24, 347 639(17) 14.40(11)

1 Si iii 1206.5 102, 194 90(10) 12.75(5)

J0950+4831 1 H i 1025.72 −1872, −1634 294(49) 14.75(11)

972.54 −1881, −1670 106(24) 14.73(13)

1 O vi 1031.93 −1940, −1620 541(33) 14.87(5) 0.9

1037.62 −1950, −1572 374(36) 14.90(5)

1 C iii 977.02 −1930, −1670 178(21) 13.61(15)

J0959+0503 1 H i 1215.67 −3505, −3248 218(17) 13.73(8)

1025.72 −3396, −3176 25(6) 13.6(4)

1 O vi 1031.93 −3505, −3248 <19 <13.32

1037.62 −3505, −3248 <17 <13.43

1 Si iii 1206.5 −3505, −3248 <24 <12.04

2 H i 1215.67 −2488, −1989 518(19) 14.07(3)

1025.72 −2406, −2179 138(17) 14.34(15)

2 O vi 1031.93 −2361, −2211 >212 >14.37 1

1037.62 −2370, −2061 200(16) 14.58(4)

2 N v 1238.82 −2351, −2166 53(10) 13.43(10)

1242.8 −2399, −2236 48(10) 13.68(20)

J1009+0713 1 H i 1215.67 −1026, −836 <44 <12.39

1 O vi 1031.93 −980, −836 203(12) 14.47(6) 0.8

1037.62 −1026, −874 200(19) 14.69(6)

1 C iii 977.02 −1003, −920 26(12) 12.68(24)

2 H i 1215.67 −831, −675 233(29) 13.78(8)

2 O vi 1031.93 −870, −734 303(15) 14.65(5) 0.75

– 70 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

1037.62 −865, −745 211(15) 14.76(6)

2 C iii 977.02 −870, −734 <15 <12.37

2 Si iii 1206.5 −870, −734 <15 <12.17

3 H i 1215.67 −491, −362 215(24) 13.79(7)

1025.72 −471, −389 52(13) 13.93(13)

3 O vi 1031.93 −493, −354 233(21) 14.50(4) 0.75

1037.62 −493, −354 213(14) 14.80(6)

3 C iii 977.02 −482, −416 42(10) 12.88(10)

4 H i 1215.67 −321, −133 257(30) 13.81(5)

4 O vi 1031.93 −287, −135 91(20) 13.93(11) 1

1037.62 −237, −171 17(12) 13.5(5)

4 C iii 977.02 −287, −135 <17 <12.4

4 Si iii 1206.5 −287, −135 <20 <12.24

PG1049−005 1 H i 1215.67 −4308, −3438 898(48) 14.34(3)

1 O vi 1031.93 −4293, −3449 2089(77) 15.50(3) 0.8

1037.62 −4308, −3438 1861(53) 15.67(2)

1 S vi 933.38 −3834, −3413 216(18) 13.96(4)

944.52 −3834, −3413 134(23) 13.98(7)

1 N v 1238.82 −4297, −3721 450(36) 14.38(5)

1242.8 −4297, −3721 325(37) 14.58(5)

J1059+1441 1 H i 1025.72 −2670, −2233 368(50) 14.84(7)

972.54 −2621, −2474 126(13) 14.81(6)

949.74 −2630, −2378 98(17) 15.00(8)

1 O vi 1031.93 −2701, −2321 702(33) 14.95(4) 1

1037.62 −2703, −2320 400(22) 14.94(3)

1 C iii 977.02 −2701, −2321 <15 <12.67

J1059+2517 1 H i 1025.72 293, 401 62(25) 14.0(2)

1 O vi 1031.93 300, 400 115(15) 14.11(7) 0.6

1037.62 286, 350 83(13) 14.26(10)

1 C iii 977.02 300, 400 <26 <12.65

J1103+4141 1 H i 1215.67 −4793, −4565 543(25) 14.31(6)

1025.72 −4772, −4599 190(12) 14.53(3)

972.54 −4755, −4626 66(14) 14.50(10)

1 O vi 1031.93 −4779, −4622 177(11) 14.27(3) 0.5

1037.62 −4759, −4636 112(11) 14.34(6)

1 C iii 977.02 −4721, −4633 38(12) 12.85(20)

2 H i 1215.67 −2132, −1973 144(22) 13.51(10)

2 O vi 1031.93 −2166, −1898 492(15) 14.85(5) 0.5

1037.62 −2188, −1914 <628 <15.35

2 C iii 977.02 −2125, −1946 162(21) 13.53(7)

3 H i 1215.67 −1846, −1772 46(13) 13.00(16)

3 O vi 1031.93 −1861, −1735 198(11) 14.30(3) 1

1037.62 −1858, −1744 129(10) 14.41(5)

3 C iii 977.02 −1878, −1736 135(13) 13.43(7)

4 H i 1215.67 −1558, −1381 <2.4 <12.13

– 71 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

4 O vi 1031.93 −1541, −1364 107(12) 14.01(6) 1

1037.62 −1558, −1381 67(13) 14.08(4)

4 C iii 977.02 −1541, −1364 <6 <12.43

5 H i 1215.67 −1226, −1118 <25 <12.72

5 O vi 1031.93 −1226, −1118 76(9) 13.89(5) 1

1037.62 −1221, −1136 56(8) 13.99(7)

5 C iii 977.02 −1186, −1138 18(8) 12.51(25)

8 H i 1215.67 −643, −347 407(21) 14.17(4)

1025.72 −609, −367 324(11) 14.82(4)

972.54 −503, −367 126(13) 14.82(7)

6,7,8 O vi 1031.93 −786, −384 1010(24) 15.24(5) 1

1037.62 −786, −384 728(22) 15.30(3)

8 C iii 977.02 −527, −388 67(13) 13.13(9)

8 N v 1238.82 −558, −408 273(23) 14.35(7)

1242.8 −520, −374 251(24) 14.60(7)

9 H i 1215.67 1738, 1905 <6 <12.43

9 O vi 1031.93 1721, 1905 233(16) 14.42(8) 0.8

1037.62 1738, 1929 242(16) 14.78(4)

9 C iii 977.02 1721, 1905 <18 <12.44

J1104+3141 1 H i 1215.67 −3778, −3644 247(16) 13.88(6)

1025.72 −3764, −3664 46(7) 13.85(8)

1 O vi 1031.93 −3778, −3644 <11 <13.25

1037.62 −3778, −3644 <11 <13.47

1 Si iii 1206.5 −3703, −3485 223(12) 13.11(3)

2 H i 1025.72 −218, −116 44(8) 13.82(10)

2 O vi 1031.93 −204, −133 76(6) 13.91(4) 0.6

1037.62 −197, −136 53(7) 14.01(7)

2 C iii 977.02 −204, −133 <7 <12.01

J1117+2634 1 H i 1215.67 48, 245 298(14) 13.88(3)

1 O vi 1031.93 37, 228 282(11) 14.54(3) 0.5

1037.62 38, 228 269(15) 14.81(5)

1 C iii 977.02 37, 228 <12 <12.31

J1133+0327 1 H i 1025.72 −4379, −4211 <40 <13.36

1 O vi 1031.93 −4379, −4211 183(28) 14.28(9) 0.75

1 1037.62 −4379, −4228 216(22) 14.70(6)

1 S vi 944.52 −4379, −4211 <4.5 <13.2

J1157−0022 1 H i 1215.67 −925, −701 573(15) 14.40(4)

1025.72 −922, −769 346(16) 15.01(2)

972.54 −898, −759 207(18) 15.14(5)

1 O vi 1031.93 −896, −726 429(17) 14.88(6) 1

1037.62 −908, −757 413(14) 15.19(6)

1 C iii 977.02 −888, −755 160(14) 13.56(4)

1 S vi 933.38 −876, −749 110(27) 13.63(9)

944.52 −899, −797 65(18) 13.66(15)

1 N v 1238.82 −927, −743 306(98) 14.63(6)

– 72 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

1242.8 −918, −759 338(18) 14.79(7)

2 H i 1215.67 −526, −372 254(12) 13.96(5)

1025.72 −517, −367 91(18) 14.19(10)

972.54 −567, −376 27(25) 14.2(7)

2 O vi 1031.93 −526, −372 <20 <13.20

1037.62 −526, −372 <19 <13.76

2 C iii 977.02 −508, −376 71(17) 13.17(8)

PG1202+281 1 H i 1215.67 −172, 91 172(9) 13.61(7)

1025.72 −151, 62 41(5) 13.79(20)

1 O vi 1031.93 −172, 91 <18 <13.39

1037.62 −172, 91 <19 <13.79

1 Si iii 1206.5 −172, 91 <11 <11.77

J1207+2624 1 H i 1215.67 −857, −483 652(28) 14.24(3)

1 O vi 1031.93 −793, −466 919(25) 15.24(5) 1

1037.62 −793, −466 844(25) 14.48(5)

1 C iii 977.02 −782, −500 244(22) 13.65(5)

J1210+3157 1 H i 1215.67 −54, 180 658(15) 14.37(3)

1025.72 −37, 156 304(14) 14.86(4)

972.54 −29, 170 192(20) 15.05(5)

1 O vi 1031.93 −27, 153 294(12) 14.57(3) 0.8

1037.62 −27, 153 329(10) 14.92(2)

1 C iii 977.02 −17, 146 113(17) 13.34(8)

J1211+3657 1 H i 1215.67 −812, −599 101(11) 13.32(7)

1 O vi 1031.93 −812, −599 <18 <13.42

1037.62 −812, −599 <17 <13.57

1 Si iii 1206.5 −812, −599 <11 <11.90

J1233−0031 1 H i 1215.67 −245, −51 258(48) 13.85(15)

1025.72 −227, −59 53(16) 13.93(17)

1 O vi 1031.93 −245, −51 <53 <13.69

1037.62 −245, −51 <19 <13.68

1 C iii 977.02 −245, −51 <22 <12.84

J1233+4758 1 H i 1025.72 204, 323 62(9) 13.97(7)

1 O vi 1031.93 153, 313 92(10) 13.92(8) 1

1037.62 136, 293 49(11) 13.93(12)

1 C iii 977.02 201, 408 147(17) 13.43(8)

J1236+2641 1 H i 1215.67 −231, 163 743(20) 14.36(2)

1025.72 −211, 68 259(24) 14.66(6)

1 O vi 1031.93 −225, 207 931(24) 15.17(4) 0.9

1037.62 −225, 207 868(26) 15.39(3)

1 N v 1238.82 −221, 143 423(51) 14.42(7)

1242.8 −65, 27 107(15) 14.14(8)

J1245+3356 1 H i 1025.72 −3971, −3696 662(25) 15.29(5)

972.54 −3984, −3703 602(23) 15.77(6)

949.74 −3937, −3742 497(19) 16.00(5)

937.8 −3943, −3676 534(23) 16.28(6)

– 73 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

930.75 −3942, −3666 556(19) 16.49(5)

926.23 −3927, −3639 564(20) 16.61(7)

923.15 −3936, −3737 306(16) 16.51(6)

920.96 −3920, −3748 266(14) 16.55(6)

1 O iv 787.71 −3939, −3732 293(17) 14.95(7)

1 O vi 1031.93 −3923, −3726 145(23) 14.14(18) No λ1038

1 C iii 977.02 −3989, −3744 516(18) 14.27(6)

1 S v 786.48 −3914, −3823 54(12) 12.94(12)

2 H i 1025.72 187, 524 690(31) 15.27(5)

972.54 224, 439 518(20) 15.69(5)

949.74 248, 432 432(15) 15.96(6)

937.8 241, 432 395(24) 16.09(10)

2 O iv 787.71 248, 435 231(18) 14.78(6)

2 O vi 1031.93 275, 480 305(26) 14.56(6) 0.5

1037.62 330, 456 174(34) 14.60(13)

3 H i 1025.72 1122, 1269 284(19) 14.89(10)

972.54 1099, 1272 263(16) 15.36(15)

949.74 1204, 1293 78(11) 14.97(10)

3 O vi 1031.93 1122, 1269 <42 <13.52

1037.62 1122, 1269 <44 <13.96

3 C iii 977.02 1122, 1269 <17 <12.50

J1327+4435 1 H i 1215.67 −1864, −1748 233(19) 13.90(8)

1025.72 −1976, −1718 208(14) 14.58(18)

1 O vi 1031.93 −1864, −1748 <31 <13.69

1037.62 −1864, −1748 <186 <14.74

1 C iii 977.02 −1864, −1748 <39 <12.92

2 H i 1215.67 −405, 102 778(26) 14.46(4)

1025.72 −313, −99 387(39) 14.92(8)

972.54 −248, −133 165(40) 14.96(18)

2 O vi 1031.93 −405, −126 316(35) 14.62(7) 1

1037.62 −405, −126 202(35) 14.69(9)

2 C iii 977.02 −405, −126 <42 <13.09

J1330+3119 1 H i 1215.67 −2456, −2225 262(15) 13.92(5)

1025.72 −2367, −2143 140(16) 14.37(18)

1 O vi 1031.93 −2456, −2225 <27 <13.40

1037.62 −2456, −2225 <29 <13.88

1 C iii 977.02 −2456, −2225 <37 <13.01

2 H i 1215.67 −1109, −697 310(18) 13.83(3)

1025.72 −1052, −744 115(15) 14.24(20)

2 O vi 1031.93 −1109, −697 <42 <13.57

2 C iii 977.02 −1109, −697 <36 <12.94

3 H i 1215.67 417, 626 332(11) 14.06(3)

1025.72 435, 549 67(12) 14.08(10)

3 O vi 1031.93 517, 690 262(19) 14.52(5) 0.85

1037.62 554, 724 171(10) 14.55(4)

– 74 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

3 Si iii 1206.5 435, 549 <5 <11.29

J1342+0505 1 H i 1215.67 −231, −81 202(9) 13.73(3)

1 O vi 1031.93 −201, −19 149(9) 14.27(5) 0.6

1037.62 −194, −16 101(8) 14.34(5)

1 N v 1238.82 −204, −88 105(19) 13.83(9)

1242.8 −207, −122 68(17) 13.89(14)

2 H i 1215.67 109, 401 688(17) 14.46(6)

1025.72 105, 337 394(18) 15.04(5)

972.54 139, 316 264(12) 15.30(4)

949.74 184, 330 191(12) 15.42(4)

937.8 163, 340 161(14) 15.54(5)

930.75 180, 316 73(15) 15.37(10)

926.23 173, 313 90(15) 15.65(9)

2 O vi 1031.93 160, 344 339(15) 14.76(6) 1

1037.62 160, 344 297(13) 14.98(5)

2 C iii 977.02 190, 282 143(8) 13.54(4)

2 N v 1238.82 180, 347 227(25) 14.20(7)

1242.8 194, 303 135(20) 14.22(9)

J1342+1844 1 H i 1215.67 −3550, −3327 328(23) 13.96(10)

1025.72 −3480, −3312 166(13) 14.4(2)

1 O vi 1031.93 −3550, −3327 <15 <13.16

1 C iii 977.02 −3494, −3369 145(15) 13.48(6)

2 H i 1215.67 −767, −659 47(10) 13.00(11)

2 O vi 1031.93 −752, −629 107(9) 14.02(5) 0.5

1037.62 −742, −663 74(7) 14.18(5)

2 N v 1238.82 −730, −688 46(11) 13.43(15)

1242.8 −730, −688 35(12) 13.58(21)

3 H i 1215.67 −201, 24 459(14) 14.29(5)

1025.72 −180, 85 361(14) 14.97(4)

972.54 −146, 20 327(14) 15.48(5)

949.74 −153, 54 198(18) 15.47(6)

937.8 −129, −27 159(17) 15.64(8)

3 O vi 1031.93 −146, 17 265(9) 14.54(3) 0.8

1037.62 −146, −24 175(8) 14.67(3)

3 C iii 977.02 −119, 14 126(13) 13.44(6)

3 N v 1238.82 −153, −37 134(19) 14.01(8)

1242.8 −136, −37 165(23) 14.38(11)

J1356+2515 1 H i 1215.67 −4964, −4669 479(25) 14.27(4)

1025.72 −4898, −4764 154(18) 14.48(9)

1 O vi 1031.93 −4950, −4717 53(11) 13.7(3) 1

1 1037.62 −4950, −4717 36(20) 13.8(4)

1 Si iii 1206.5 −4964, −4669 <36 <12.32

2 H i 1215.67 −690, 88 1581(65) 14.71(4)

1025.72 −405, −24 591(24) 15.23(3)

2 O vi 1031.93 −480, 41 1209(29) 15.27(3) 1

– 75 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

1037.62 −463, 44 1102(29) 15.58(5)

2 N v 1238.82 −408, −167 211(16) 14.10(4)

1242.8 −401, −204 143(15) 14.24(2)

J1357+1704 1 H i 1215.67 −1969, −1799 248(8) 13.87(5)

1025.72 −2017, −1806 91(15) 14.16(16)

1 O vi 1031.93 −1969, −1799 <12 <12.97

1037.62 −1969, −1799 <20 <13.72

1 Si iii 1206.5 −1969, −1799 <12 <11.86

2 H i 1215.67 −1064, −594 622(17) 14.20(3)

1025.72 −1134, −669 86(25) 14.12(20)

2 O vi 1031.93 −912, −655 264(13) 14.46(4) 1

1037.62 −912, −655 <395 <15.11

2 Si iii 1206.5 −912, −655 67(8) 12.57(7)

J1435+3604 1 H i 1215.67 −332, −116 1034(34) 14.61(4)

1 O vi 1031.93 −534, −85 1193(28) 15.40(7) 1

1037.62 −534, −116 1063(28) 15.63(6)

1 N v 1238.82 −548, −177 718(74) 14.71(7)

1242.8 −568, −225 634(74) 14.94(8)

J1445+3428 1 H i 1025.72 27, 207 238(34) 14.69(9)

972.54 68, 180 101(29) 14.76(8)

1 O iv 787.71 85, 201 132(12) 14.53(7)

1 O vi 1031.93 −31, 217 528(37) 14.85(7) 1

1037.62 −51, 269 536(49) 15.12(6)

J1521+0337 1 H i 1215.67 −684, −68 1326(34) 14.74(7)

1 O vi 1031.93 −544, 204 749(49) 14.05(6) 1

1037.62 −565, −201 757(36) 15.34(4)

1 C iv 1548.2 −548, −255 917(44) 14.62(5)

1550.77 −524, −265 555(33) 14.60(4)

1 N v 1238.82 −595, −146 779(74) 14.73(6)

1242.8 −809, 27 <1288 <15.24

J1545+0936 1 H i 1025.72 −4446, −4358 85(22) 14.18(15)

1 O vi 1031.93 −4448, −4389 81(16) 14.05(9) 1

1037.62 −4457, −4355 93(26) 14.28(18)

1 C iii 977.02 −4448, −4389 <10 <12.3

2 H i 1025.72 −364, −279 209(17) 14.70(7)

972.54 −347, −259 98(17) 14.80(8)

2 O vi 1031.93 −367, −268 129(21) 14.19(8) 0.2

1037.62 −374, −272 101(23) 14.34(14)

2 C iii 977.02 −357, −279 67(19) 13.18(16)

J1550+4001 1 H i 1025.72 −1273, −785 667(32) 15.28(6)

972.54 −1145, −845 468(19) 15.58(4)

949.74 −1105, −825 400(16) 15.84(7)

937.8 −1114, −779 411(17) 16.07(10)

926.23 −1077, −833 310(21) 16.39(8)

923.15 −1086, −831 325(18) 16.41(15)

– 76 –

Table 3—Continued

Source Component Species λ0 vmin, vmax EW logNa C(v)

(A) (km s−1) (mA) (cm−2)

920.96 −1079, −799 247(21) 16.50(8)

1 O vi 1031.93 −1273, −785 <35 <13.79

1 C iii 977.02 −1103, −839 373(19) 14.05(6)

1 O iii 832.93 −1125, −788 428(21) 15.04(4)

1 O iv 787.711 −1176, −819 110(40) 14.47(3)

2 H i 1025.72 −310, −34 199(20) 14.55(5)

2 O vi 1031.93 −194, −88 118(14) 14.09(7) 0.5

1037.62 −194, −88 56(12) 14.03(3)

2 C iii 977.02 −259, −119 73(7) 13.13(10)

J1619+3342 1 H i 1215.67 −4564, −4371 174(16) 13.58(5)

1 O vi 1031.93 −4548, −4350 297(10) 14.54(2) 0.4

1037.62 −4509, −4330 175(10) 14.57(3)

1 C iii 977.02 −4548, −4350 <9 <12.16

2 H i 1215.67 −4161, −3930 <60 <13.13

2 O vi 1031.93 −4161, −3930 102(13) 13.96(6) 1

1037.62 −4138, −3927 77(10) 14.13(10)

2 C iii 977.02 −4100, −3948 102(7) 13.28(5)

3 H i 1215.67 −3873, −3757 55(16) 13.05(16)

3 O vi 1031.93 −3859, −3707 192(8) 14.30(2) 0.5

1037.62 −3862, −3719 89(9) 14.22(5)

3 C iii 977.02 −3859, −3707 <6 <12.04

3 Si iii 1206.5 −3909, −3702 <51 <13.67

4 H i 1215.67 −184, 228 1077(30) 14.67(5)

1025.72 −187, 214 711(18) 15.39(15)

972.54 −167, 241 598(16) 15.81(15)

949.74 −116, 242 512(16) 16.09(9)

937.8 −133, 313 422(25) 16.26(10)

930.75 −122, 82 364(10) 16.39(10)

926.23 −166, 68 391(11) 16.53(7)

923.15 −126, 95 388(11) 16.75(10)

920.96 −129, −27 214(9) 16.50(3)

4 O iii 832.93 −187, 235 488(25) 15.19(7)

4 O iv 787.71 −146, 293 566(27) 15.25(6)

4 O vi 1031.93 −231, 231 704(18) 15.08(7) 1

1037.62 −109, 255 663(17) 15.44(14)

4 C ii 1036.34 −160, 99 280(14) 14.55(3)

4 C iii 977.02 −133, 367 708(19) 14.36(7)

4 S v 786.48 −105, 207 209(19) 13.68(4)

4 S vi 933.38 −99, 204 279(16) 14.10(4)

944.52 −102, 109 180(10) 14.17(3)

J2257+1340 1 H i 1025.72 4599, 4786 114(33) 14.30(20)

972.54 4622, 4759 25(16) 14.1(4)

1 O vi 1037.62 4599, 4786 <70 <14.21

1 C iii 977.02 4650, 4749 49(6) 13.1(3)

Note. — Columns list the (1) abbreviated source name, (2) component number of the absorption

system, ranked according to the central velocity, (3) species of the detected absorption feature, (4) rest-

– 77 –

frame wavelength of the detected transition, (5) integrated velocity range for the absorbing features

(km s−1), (6) rest-frame equivalent width of the absorption line, (7) integrated apparent column

density Na =∫Na(v)dv, and (8) covering factor C(v) of the doublet system, when available. For

cases of non-detections, listed are the 3σ upper limits to the equivalent width and apparent column

density. Numbers in parentheses indicate uncertainties in the final digit(s) of listed quantities, when

available.

– 78 –

Table 4. Individual Component Fitting

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

J0012−1022 1 H i Lyα, β · · · · · · · · · 13.93

−4478 32.8 13.92

−4411 4.1 12.42

2 H i Lyα, β, γ, δ, ǫ, ζ, η · · · · · · · · · 15.64

136.5 31.4 13.97

289.2 57.5 15.63

451.5 23.6 13.74

2 O vi 1031.93, 1037.62 · · · · · · · · · 15.08

245.5 35 14.53

324.7 74 14.93

2 C ii 1036.34 315.3 17.7 13.94 13.94

2 C iii 977.02 · · · · · · · · · 14.26

224.9 5.2 13.44

329.3 61.6 14.19

2 Si ii 1260.42 331 17.2 13.37 13.37

2 Si iii 1206.5 332 32.6 13.44 13.44

2 Si iv 1393.76, 1402.77 326.1 22.5 13.77 13.77

2 N v 1238.82, 1242.8 · · · · · · · · · 14.44

287.5 105.6 14.18

325.6 14.5 14.1

3 H i Lyα, β 4492 98 13.46 13.46

J0042−1037 1 H i Lyα, β · · · · · · · · · 14.01

−4320 26.2 13.94

−4265 27.2 13.18

2 H i β, γ −640 21 13.58 13.58

J0155−0857 1 H i Lyα, β · · · · · · · · · 15.21

−587 21.4 13.1

−434.1 64.6 14.72

−222.3 33.6 15.03

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.90

−491 18.7 14.15

−400 45.5 15.23

−215.4 28 15.79

1 C iii 977.02 · · · · · · · · · 15.24

−451.1 38.1 15.02

−236.6 11 14.84

1 Si iii 1206.5 · · · · · · · · · 13.16

−466.9 15.8 12.27

−421.9 13.6 12.78

−389.9 20.8 12.69

−215.8 13.6 12.18

1 Si iv 1393.76, 1402.77 · · · · · · · · · 15.08

−436.1 39 13.67

−381.2 3.47 15.06

1 N v 1238.82, 1242.8 · · · · · · · · · 16.64

– 79 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

−436.4 54.8 14.98

−393.1 6.92 16.63

−220.5 32.5 14.7

J0212−0737 1 H i Lyα, β, γ · · · · · · · · · 15.58

−173.2 22.3 15.32

−99 17.9 14.92

17.1 35.4 14.49

87.6 20.6 14.77

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.64

−215 46.2 14.62

12.1 54.6 15.57

184 38.4 14.39

1 Si iii 1206.5 · · · · · · · · · 13.29

−183 12.5 12.59

−108 36.9 13.19

J0226+0015 1 H i Lyβ, γ · · · · · · · · · 14.49

−4534 41.1 14.18

−4471 17.1 14.2

1 O vi 1031.93, 1037.62 −4483 13 13.9 13.90

1 C iii 977.02 13.22

−4547 9.9 12.21

−4483 13.8 13.17

1 O iv 787.71 −4475 12.8 14.4 14.40

J0242−0759 1 H i Lyα, β · · · · · · · · · 13.94

−2146 21 13.14

−2062 25.1 13.87

J0259+0037 1 H i Lyβ −4316 23.4 14.07 14.07

1 O vi 1031.93 · · · · · · · · · 14.36

−4343 3.09 14.07

−4294 22.2 14.05

J0803+4332 1 H i Lyα, β, γ, δ · · · · · · · · · 15.21

−4345 25.9 14.39

−4240 44.4 15.14

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.62

−4335 3.85 13.71

−4227 42.9 14.56

1 C iii 977.02 14.15

−4336 3.6 13.58

−4234 27.8 14.02

2 H i Lyα, β, γ, δ · · · · · · · · · 15.36

−334.6 73.9 14.48

−250.3 25.5 14.92

−98.0 57.2 15.07

2 O vi 1031.93, 1037.62 · · · · · · · · · 15.45

−328.5 20 13.96

– 80 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

−234.1 31 14.76

−70.1 41.2 15.32

63.6 16.5 13.57

2 C iii 977.02 · · · · · · · · · 13.36

−356.6 28.4 12.77

−300.5 11.5 12.81

−233.6 15.5 12.96

−127.9 1.12 12.1

−42.2 0.12 10.84

J0809+4619 1 H i Lyβ, γ −98.9 51.9 14.96 14.96

1 O vi 1031.93, 1037.62 −103.1 26.7 16.03 16.03

1 C iii 977.02 · · · · · · · · · 15.58

−118.1 20 13.39

−63.7 4.4 15.58

2 H i Lyβ 87.8 6.55 13.76 13.76

2 O vi 1031.93, 1037.62 · · · · · · · · · 14.69

51.4 19.2 14.58

101.7 26.9 14.04

2 C iii 977.02 161.6 14.2 12.98 12.98

J0820+2334 1 H i Lyα, β −3961 46.7 13.87 13.87

1 C iii 977.02 −3973 42.3 13.58 13.58

2 H i Lyα, β, γ, δ · · · · · · · · · 14.57

−3252 20.8 13.1

−3197 20.8 14.39

−3152 16.8 14.07

2 O vi 1031.93, 1037.62 · · · · · · · · · 13.97

−3254 58.7 13.49

−3181 24.5 13.8

2 C iii 977.02 −3176 5.4 13.02 13.02

3 H i Lyα, β −1492 31.8 13.62 13.62

J0912+2957 1 H i Lyα · · · · · · · · · 13.86

−177 44.6 12.8

−65 24 13.71

−2.3 20.6 13.15

2 H i Lyα 4132 31.8 13.94 13.94

2 O vi 1031.93, 1037.62 4016 24.5 14.46 14.46

J0925+4535 1 H i Lyα, β, γ, δ · · · · · · · · · 15.08

−4448 2.86 13.45

−4369 23.2 15.07

−4295 1.83 12.04

1 C iii 977.02 −4380 11 13.05 13.05

J0929+4644 1 H i Lyα, β · · · · · · · · · 13.59

−870 44.3 13.18

−860 27.5 13.37

J0928+6025 1 H i Lyα · · · · · · · · · 13.62

– 81 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

−328.9 12.9 12.84

−277.8 66.7 13.54

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.62

−307.3 17.1 14.05

−244.3 22.3 14.48

1 C iii 977.02 −172.9 35.8 13.4 13.40

J0943+0531 1 H i Lyβ, γ 565.6 43.7 14.83 14.83

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.75

576.4 18.9 14.56

634 34 14.3

J0947+1005 1 H i Lyα −3535 95 13.79 13.79

1 O vi 1031.93, 1037.62 −3547 65 14.4 14.40

2 H i Lyα −1294 52.7 13.55 13.55

2 O vi 1031.93, 1037.62 14.16

−1334 17.1 13.63

−1279 28.4 14.01

2 N v 1238.82, 1242.8 −1360 22.2 13.33 13.33

J0949+3902 1 H i Lyα, β, γ, δ, ǫ, ζ, η, ι · · · · · · · · · 15.20

70.6 26.5 14.13

144 33.4 15.16

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.44

100.3 34 14.19

162.4 44.9 14.08

1 C iii 977.02 · · · · · · · · · 14.41

84.5 17.9 13

174.3 71.6 14.39

1 Si iii 1206.5 157.2 11.1 12.9 12.90

J0950+4831 1 H i Lyβ, γ · · · · · · · · · 14.73

−1831 23.6 14.34

−1719 57.1 14.5

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.86

−1824 51.3 14.71

−1700 34.4 14.33

1 C iii 977.02 · · · · · · · · · 13.83

−1845 7.55 13.37

−1711 12.8 13.65

J0959+0503 1 H i Lyα, β · · · · · · · · · 14.81

−3481 3.4 12.67

−3403 1.42 14.77

−3341 33.7 13.72

2 H i Lyα, β · · · · · · · · · 14.14

−2398 16.1 12.95

−2279 59.1 13.97

−2124 106.5 13.57

2 O vi 1031.93, 1037.62 · · · · · · · · · 14.55

– 82 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

−2328 18.2 13.47

−2245 62.5 14.51

2 N v 1238.82, 1242.8 −2296 49.9 13.54 13.54

J1009+0713 1 O vi 1031.93, 1037.62 −936.7 26.9 14.71 14.71

1 C iii 977.02 −946.5 3.84 12.87 12.87

2 H i Lyα · · · · · · · · · 13.80

−791.6 23.8 13.64

−718 42.3 13.3

2 O vi 1031.93, 1037.62 · · · · · · · · · 14.85

−843.3 9.8 14.14

−770 30.2 14.76

3 H i Lyα, β −430.3 30.7 13.82 13.82

3 O vi 1031.93, 1037.62 −413.8 33.4 14.77 14.77

3 C iii 977.02 −445.9 20.2 13.05 13.05

4 H i Lyα −233.9 77.2 13.78 13.78

4 O vi 1031.93, 1037.62 −214.4 10.4 13.61 13.61

PG1049−005 1 H i Lyα · · · · · · · · · 14.39

−4405 11.6 13.17

−4159 176.7 13.78

−3980 26.2 13.19

−3784 65.2 14.02

−3624 225.4 13.64

−3516 12.5 12.95

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.50

−4437 77.2 13.79

−4187 67.2 14.78

−3986 18.9 14.12

−3913 10.5 13.82

−3878 308.2 15.23

−3792 45.3 14.69

−3596 78.4 14.12

1 S vi 933.38, 944.52 · · · · · · · · · 13.96

−4233 22.3 13.72

−3768 62.3 13.59

1 N v 1238.82, 1242.8 −3801 53.5 14.3 14.30

J1059+1441 1 H i Lyβ, γ, δ · · · · · · · · · 14.93

−2548 40.8 14.83

−2407 28.8 14.24

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.95

−2554 64 14.85

−2397 56.2 14.26

J1059+2517 1 H i Lyβ 330 33.7 14.01 14.01

O vi 1031.93, 1037.62 322.5 15.9 14.27 14.27

J1103+4141 1 H i Lyα, β, γ −4689 45.2 14.54 14.54

1 O vi 1031.93, 1037.62 −4694 44 14.29 14.29

– 83 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

1 C iii 977.02 · · · · · · · · · 12.93

1 −4723 1.68 12.65

1 −4657 17.5 12.6

2 H i Lyα −2050 49.1 13.5 13.50

2 O vi 1031.93, 1037.62 −2030 66.9 14.89 14.89

2 C iii 977.02 −2015 40.9 13.49 13.49

3 H i Lyα −1811 18.1 13.07 13.07

3 O vi 1031.93, 1037.62 −1804 44 14.32 14.32

3 C iii 977.02 −1820 56.7 13.49 13.49

4 O vi 1031.93, 1037.62 −1490 38.8 14.05 14.05

5 O vi 1031.93, 1037.62 −1170 13.6 13.92 13.92

5 C iii 977.02 −1173 2.29 12.72 12.72

6 O vi 1031.93, 1037.62 −727.5 38.2 14.8 14.80

7 H i Lyα −609.9 11.3 13.05 13.05

7 O vi 1031.93, 1037.62 −602.2 32.2 14.55 14.55

8 H i Lyα, β, γ −457.9 26.5 14.86 14.86

8 O vi 1031.93, 1037.62 −468.2 41.8 15.09 15.09

8 C iii 977.02 −450.2 12.6 13.12 13.12

8 N v 1238.82, 1242.8 −465.6 25.6 14.58 14.58

9 O vi 1031.93, 1037.62 1843 32.5 14.569 14.57

J1104+3141 1 H i Lyα, β −3706 31.1 13.93 13.93

1 S iii 1206.5 −3610 66 13.1 13.10

2 H i Lyβ −157.1 24.7 13.82 13.82

2 O vi 1031.93, 1037.62 −167.9 13.1 14.08 14.08

J1117+2634 1 H i Lyα · · · · · · · · · 13.90

86.4 23.2 13.58

156.1 25 13.58

213.2 5.3 12.62

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.81

83.4 22.7 13.89

136.3 24.5 13.97

178.5 15.5 14.67

J1133+0327 1 O vi 1031.93, 1037.62 · · · · · · · · · 14.54

−4327 30.7 14.47

−4240 18 13.74

J1157−0022 1 H i Lyα, β, γ −842.9 37.1 15.17 15.17

1 O vi 1031.93, 1037.62 −822 34 15.61 15.61

1 C iii 977.02 −837.4 30.7 13.59 13.59

1 S vi 933.38, 944.52 −828.8 30.9 13.66 13.66

1 N v 1238.82, 1242.8 −829.5 34 14.88 14.88

2 H i Lyα, β, γ −440 21.1 14.29 14.29

2 C iii 977.02 −427 10.4 13.2 13.20

PG1202+281 1 H i Lyα, β · · · · · · · · · 13.71

−252 45 12.96

−79 32 13.61

– 84 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

46 14.2 12.27

J1207+2624 1 H i Lyα · · · · · · · · · 14.24

−689.9 78.5 14.05

−561.2 44.4 13.8

1 O vi 1031.93, 1037.62 15.62

−707 50.3 15.01

−581.4 36.4 15.5

1 C iii 977.02 · · · · · · · · · 13.66

−716.5 45.4 13.55

−574.7 43.4 13.03

J1210+3157 1 H i Lyα, β, γ · · · · · · · · · 15.03

−117.1 34.8 14.35

1.8 15.2 13.92

91 33.2 14.88

1 O vi 1031.93, 1037.62 · · · · · · · · · 14.94

−106.8 11.5 13.9

1.01 18.4 14.18

89.6 26.2 14.81

1 C iii 977.02 95 40.2 13.27 13.27

J1211+3657 1 H i Lyα · · · · · · · · · 13.35

−608 48.7 13.24

−550 29 12.69

J1233−0031 1 H i Lyα, β −141 21.2 14.03 14.03

J1233+4758 1 H i Lyβ · · · · · · · · · 14.21

129 50.6 13.87

244 27 13.95

1 O vi 1031.93, 1037.62 232 45.7 13.94 13.94

1 C iii 977.02 · · · · · · · · · 13.46

301 86.3 13.38

343 6.2 12.69

J1236+2641 1 H i Lyα, β · · · · · · · · · 14.42

−201.7 15.5 13.18

−132.6 42.4 13.69

−21.7 32 14.2

52.1 41.3 13.43

119.4 23 13.11

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.11

−187.2 5.1 <17.32

−111.2 31.2 14.62

1.01 37.8 14.62

73.6 14.6 14.47

129.8 19.8 14.23

1 N v 1238.82, 1242.8 −13.6 20 14.24 14.24

J1245+3356 1 H i Lyβ, γ, δ, ǫ, ζ, η, θ, ι · · · · · · · · · 16.68

−3924 2.68 15.13

– 85 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

−3866 27.7 16.03

−3796 21 16.56

1 O iv 787.71 · · · · · · · · · 15.02

−3872 27.6 14.85

−3803 25 14.54

1 O vi 1031.93 · · · · · · · · · 14.12

−3883 31.2 13.79

−3804 40 13.84

1 C iii 977.02 · · · · · · · · · 14.37

−3974 2.02 12.28

−3865 98.3 13.52

−3833 49 14.3

1 S v 786.48 −3868 20.8 12.97 12.97

2 H i Lyβ, γ, δ, ǫ 332.9 38.9 16.5 16.50

2 O iv 787.71 346.3 60.5 14.76 14.76

2 O vi 1031.93, 1037.62 368.2 47 14.5 14.50

3 H i Lyβ, γ, δ 1191 31.8 15.01 15.01

J1327+4435 1 H i Lyα, β −1821 23.3 14.06 14.06

2 H i Lyα, β, γ · · · · · · · · · 14.53

−340 30.7 13.92

−255.7 17.5 13.77

−186.2 42 14.29

2 O vi 1031.93, 1037.62 · · · · · · · · · 14.73

−335.8 8.1 14.05

−186.6 30.1 14.63

J1330+3119 1 H i Lyα, β · · · · · · · · · 14.26

−2324 22.5 14.2

−2266 3.08 13.37

2 H i Lyα, β · · · · · · · · · 14.19

−988 107 13.32

−854 55.4 13.63

−759 87.1 13.96

3 H i Lyα, β 501 33.2 14.13 14.13

3 O vi 1031.93, 1037.62 586 43.6 14.56 14.56

J1342+0505 1 H i Lyα · · · · · · · · · 13.80

−161.1 28.8 13.77

−101.1 3.73 12.57

1 O vi 1031.93, 1037.62 −149.1 22.9 14.4 14.40

1 N v 1238.82, 1242.8 −154.3 25.2 13.87 13.87

2 H i Lyα, β, γ, δ, ǫ, ζ, η · · · · · · · · · 14.70

146.5 18.5 13.63

241.8 41 14.65

371.4 13.4 12.96

2 O vi 1031.93, 1037.62 246.8 28.9 15.17 15.17

2 C iii 977.02 233.6 25.2 13.64 13.64

– 86 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

2 N v 1238.82, 1242.8 249.2 29.9 14.31 14.31

J1342+1844 1 H i Lyα, β · · · · · · · · · 13.99

−3447 57.3 13.76

−3399 15 13.6

1 C iii 977.02 · · · · · · · · · 13.68

−3457 24.7 13.27

−3400 7.34 13.46

2 H i Lyα −714.4 24.3 13.17 13.17

2 O vi 1031.93, 1037.62 −699.6 31.5 14.06 14.06

2 N v 1238.82, 1242.8 −714.3 11.7 13.52 13.52

3 H i Lyα, β, γ, δ, ǫ −78.3 36.5 14.52 14.52

3 O vi 1031.93, 1037.62 −70.6 27.8 14.72 14.72

3 C iii 977.02 −77.4 21.8 13.48 13.48

3 N v 1238.82, 1242.8 −80.8 10 14.73 14.73

J1356+2515 1 H i Lyα, β −4851 51.2 14.17 14.17

1 O vi 1031.93, 1037.63 −4847 3.6 14.26 14.26

2 H i Lyα, β · · · · · · · · · 14.72

−552.3 105 13.71

−386.5 43.8 13.85

−222.6 111.5 14.52

−56.9 66.3 13.78

36.5 19 12.77

2 O vi 1031.93, 1037.62 · · · · · · · · · 15.72

−387 40.3 15.48

−242.3 45.3 15.19

−142.6 15.7 14.35

−89.7 55 14.7

2 N v 1238.82, 1242.8 · · · · · · · · · 14.22

−373.1 12.3 13.51

−249.4 19.4 14.12

J1357+1704 1 H i Lyα, β −1899 28.7 13.97 13.97

2 H i Lyα, β · · · · · · · · · 14.22

−1019 24.1 12.8

−952 30.6 13.82

−781 84.4 13.98

2 O vi 1031.93, 1037.62 −787 62.6 14.47 14.47

2 Si iii 1206.5 −790 23.7 12.65 12.65

J1435+3604 1 H i Lyα · · · · · · · · · 14.64

−392.5 97 14.41

−294.3 50.9 14.21

−115.9 54 13.21

1 O vi 1031.93, 1037.62 · · · · · · · · · 16.01

−326.5 91.8 16.01

−111.2 16.5 13.67

1 N v 1238.82, 1242.8 −388.3 89.6 14.83 14.83

– 87 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

J1445+3428 1 H i Lyβ, γ 118 40.7 14.7 14.70

1 O iv 787.71 136.6 30.6 14.59 14.59

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.04

142.8 45.8 14.94

8.5 25.5 14.33

J1521+0337 1 H i Lyα · · · · · · 14.73

−505.5 22.7 13.68

−401.7 138.9 14.69

1 O vi 1031.93, 1037.62 · · · · · · · · · 15.27

−482.1 28.7 14.66

−376.1 35.9 15.05

−296.8 44 14.48

1 C iv 1548.2, 1550.77 · · · · · · · · · 14.63

−479.8 31.4 14.22

−379.2 21.3 13.91

−345.2 65.5 14.26

1 N v 1238.82, 1242.8 · · · · · · · · · 14.72

−504.8 61.9 14.03

−336 102.1 14.62

J1545+0936 1 H i Lyβ −4396 33.7 14.22 14.22

1 O vi 1031.93, 1037.62 −4419 9.1 14.33 14.33

2 H i Lyβ, γ −309.6 36.3 14.79 14.79

2 O vi 1031.93, 1037.62 · · · · · · · · · 14.45

−345.3 5.7 13.76

−301.9 9.9 14.35

2 C iii 977.02 · · · · · · · · · 15.36

−342.7 3.05 13.85

−307.4 1.26 15.35

J1550+4001 1 H i Lyβ, γ, δ, ǫ, η, θ, ι · · · · · · · · · 16.55

−1007 29.8 16.49

−875 8.38 15.66

1 C iii 977.02 · · · · · · · · · 14.27

−1020 29.8 14.22

−888 22.9 13.33

1 O iii 832.93 · · · · · · · · · 15.06

−1028 50.8 14.92

−867 34.1 14.51

1 O iv 787.711 −1040 28.5 14.31 14.31

2 H i Lyβ −160 57.2 14.54 14.54

2 O vi 1031.93, 1037.62 −153.5 24.3 14.09 14.09

2 C iii 977.02 −176.2 37.8 13.13 13.13

J1619+3342 1 H i Lyα −4443.2 60.4 13.58 13.58

1 O vi 1031.93, 1037.62 14.58

−4470 39.4 14.12

−4402 27.2 14.4

– 88 –

Table 4—Continued

Source Component Species λ0 v b logNcomp logNtotal

(A) (km s−1) (km s−1) (cm−2) (cm−2)

2 O vi 1031.93, 1037.62 −4038 62.7 13.85 13.85

2 C iii 977.02 · · · · · · · · · 13.33

−4011 53.4 13.3

−3988 2.65 12.19

3 H i Lyα −3827 56.2 13.24 13.24

3 O vi 1031.93, 1037.62 −3789 42.9 14.24 14.24

4 H i Lyα, β, γ, δ, ǫ, ζ, η, θ, ι · · · · · · · · · 15.56

−50.5 39.1 15.54

36.9 42.7 13.89

155.3 27.2 14

4 O iii 832.93 · · · · · · · · · 15.24

−35.6 43.4 15.16

77 20.8 14.19

170.4 11 14.15

4 O iv 787.71 · · · · · · · · · 15.30

−26.6 49.9 15.18

80.8 11.1 14.11

165.8 22.1 14.52

4 O vi 1031.93, 1037.62 · · · · · · · · · 15.64

−51.7 4.43 15.2

12.1 47.1 15.41

174 50.3 14.24

4 C ii 1036.34 · · · · · · · · · 15.49

387 48.5 15.48

543 49.5 13.98

4 C iii 977.02 · · · · · · · · · 14.50

−17.7 40.7 14.39

90.4 31.9 13.39

190.6 28.4 13.63

302.1 51.6 12.71

4 S v 786.48 −26.1 34.1 13.76 13.76

4 S vi 933.38, 944.52 · · · · · · · · · 14.16

−62 19.1 13.2

0 25.8 14.11

J2257+1340 1 H i Lyβ, γ 4712 23 14.24 14.24

1 C iii 977.02 · · · · · · · · · 13.12

4681 1.13 13.05

4715 1.68 12.31

Note. — Columns list the (1) abbreviated source name, (2) component number of the absorption system, ranked

according the the central velocity of the system, (3) detected species, (4) wavelength of the transition, where multiple

transitions of the same species are fit simultaneously, (5) velocity centroid of each absorption component, listed in

order of velocity off-set from the systemic redshift, (6) b parameter of each individual absorption component from Voigt

profile fitting, (7) column density of each absorption component obtained with Voigt profile fitting, and (8) total column

density, calculated as the sum of the column densities obtained from Voigt profile fitting of the all evident components

in a system.