Emission and Absorption - mps.mpg.de · classical radiation damping constant ... Profile function...

of 35 /35
1 Stellar Atmospheres: Emission and Absorption 1 Emission and Absorption Stellar Atmospheres: Emission and Absorption 2 Chemical composition Stellar atmosphere = mixture, composed of many chemical elements, present as atoms, ions, or molecules Abundances, e.g., given as mass fractions β k Solar abundances M M 001 . 0 009 . 0 001 . 0 004 . 0 28 . 0 71 . 0 = = = = = = Fe O N C He H β β β β β β Universal abundance for Population I stars

Embed Size (px)

Transcript of Emission and Absorption - mps.mpg.de · classical radiation damping constant ... Profile function...

  • 1

    Stellar Atmospheres: Emission and Absorption

    1

    Emission and Absorption

    Stellar Atmospheres: Emission and Absorption

    2

    Chemical composition

    Stellar atmosphere = mixture, composed of many chemicalelements, present as atoms, ions, or molecules

    Abundances, e.g., given as mass fractions βk• Solar abundances

    M

    M

    001.0

    009.0001.0004.028.071.0

    =

    =====

    Fe

    O

    N

    C

    He

    H

    β

    βββ

    ββ

    Universal abundance for Population I stars

  • 2

    Stellar Atmospheres: Emission and Absorption

    3

    Chemical composition

    • Population II stars

    • Chemically peculiar stars, e.g., helium stars

    • Chemically peculiar stars, e.g., PG1159 stars

    0.1 0.00001

    H H

    He He

    Z Z

    β ββ ββ β

    =

    =

    = L

    0.0020.964

    0.029

    0.003

    0.002

    H H

    He He

    C C

    N N

    O O

    β ββ ββ ββ ββ β

    ≤ >

    = >>

    = ≈

    = <

    0.05

    0.25

    0.550.02

    0.15

    H H

    He He

    C C

    N

    O O

    β ββ ββ βββ β

    ≤ >

    = >><

    = >>

    Stellar Atmospheres: Emission and Absorption

    4

    Other definitions

    • Particle number density Nk = number of atoms/ions of element k per unit volumerelation to mass density:

    with Ak = mean mass of element k in atomic mass units (AMU)mH = mass of hydrogen atom

    • Particle number fraction

    • logarithmic• Number of atoms per 106 Si atoms (meteorites)

    kHkk NmA=ρβ

    ∑ ′kk

    NN

    00.12)/log( += Hkk NNε

  • 3

    Stellar Atmospheres: Emission and Absorption

    5

    The model atom

    The population numbers (=occupation numbers)ni = number density of atoms/ions of an element, which are in

    the level i

    Ei = energy levels, quantizedE1 = E(ground state) = 0Eion = ionization energy

    bound states, „levels“

    free states

    ionization limit

    1

    65432

    Ene

    rgy

    Eion

    Stellar Atmospheres: Emission and Absorption

    6

    Transitions in atoms/ions

    1. bound-bound transitions = lines2. bound-free transitions = ionization and

    recombination processes3. free-free transitions = Bremsstrahlung

    We look for a relation between macroscopic quantities and microscopic (quantum mechanical) quantities, whichdescribe the state transitions within an atom

    Ene

    rgie

    Eion

    Photon absorption cross-sections

    1 2

    3

    )(),( νηνκ ν

  • 4

    Stellar Atmospheres: Emission and Absorption

    7

    Line transitions:Bound-free transitions: thermal average of electron velocities v(Maxwell distribution, i.e., electrons in thermodynamic equilibrium)

    Free-free transition: free electron in Coulomb field of an ion, Bremsstrahlung, classically: jump into other hyperbolic orbit, arbitrary

    For all processes holds: can only be supplied or removed by:– Inelastic collisions with other particles (mostly electrons), collisional

    processes– By absorption/emission of a photon, radiative processes– In addition: scattering processes = (in)elastic collisions of photons with

    electrons or atoms- scattering off free electrons: Thomson or Compton scattering- scattering off bound electrons: Rayleigh scattering

    Photon absorption cross-sections

    ffE∆E∆

    ( )2ebf th ion low

    unbound state ion free electron 1/ 2 m v

    E E E E

    = +

    ∆ > = −

    ( )lowupbb EEE −±=∆

    +

    Stellar Atmospheres: Emission and Absorption

    8

    The line absorption cross-section

    Classical description (H.A. Lorentz)Harmonic oscillator in electromagnetic field• Damped oscillations (1-dim), eigen-frequency ω0

    Damping constant γ• Periodic excitation with frequency ω by E-fieldEquation of motion:

    inertia + damping + restoring force = excitationUsual Ansatz for solution:

    tieeExmxmxm ωωγ 020 =++ &&&

    tiextx ω0)( =

    ( ) tiem

    eExi ωωωγω 0202 =++−

  • 5

    Stellar Atmospheres: Emission and Absorption

    9

    The line absorption cross-section

    ( ) ( )

    22

    3

    2 22 20 0

    2 2 2 2 2 2 2 2 2 20 0

    22 2 4 2 2 52 2 60 02 2 20

    2 2 2

    Electrodynamics: 2 ( )3

    ( ) cos ( )sin( ) ( )

    2cos co

    radiated p

    s sin s

    ower

    in

    ep(t) xc

    eEx(t) t tm

    eE(x(t)) t t t tm N N N

    ω ω γωω ω ω ωω ω ω γ ω ω ω γ

    ω ω ω γ ω ω ω γ ωω ω ω ω

    =

    −= − + − − + − + − − = + +

    &&

    &&

    &&

    ( )

    ( )( )

    2 2 00

    02 20

    2 200

    2 2 2 2 20

    2 20 0

    2 2 2 2 2 2 2 2 2 20 0

    1

    expand ( )

    real part Re cos sin( ) ( )

    − + + =

    = ⋅− +

    − −= ⋅

    − +

    −= + − + − +

    i t

    t

    ti

    i

    eEi x(t) em

    eEx(t) em i

    eEx(t) em

    eE(x(t)) t t

    i

    m

    ω

    ω

    ω

    ω ωγ ω

    ω ω ωγ

    ω ω ωγω ω ω γ

    ω ω γωω ωω ω ω γ ω ω ω γ

    Stellar Atmospheres: Emission and Absorption

    10

    The line absorption coss-section

    ( )( )( )

    ( )

    2 2

    22 2 2 2 2202 0

    222 2 2 20

    2 42 0

    22 2 2

    2

    0

    3

    2

    average over one period

    power, averaged ove

    cos sin 1/ 2,

    r one

    cos sin 0

    1(2

    1

    perio

    (2

    3

    d

    2 (

    = = =

    − +

    = − +

    =

    =

    − +

    &

    &

    &

    &&

    &ep x

    t t t t

    eEx)

    E)m

    c

    m

    ex

    ω ω ω ω

    ω ω γ ωω

    ω ω γ ω

    ωω ω γ ω

    ( )

    ( )

    4 20

    2

    4 22 04

    22 2 2 2

    3

    4

    22 2 2

    3

    0

    0

    2

    2

    C=normalization constant ( )3

    ( ) profi

    )3

    le functi

    ( ) /

    /

    n( 2

    o )

    = = /2

    =−

    − +

    +

    =

    C

    e

    e Epm c

    C

    Em c

    ωω ω γ

    ν ω π

    νϕ νν ν γ π ν

    ω

    ϕ ν

  • 6

    Stellar Atmospheres: Emission and Absorption

    11

    The line absorption cross-section

    0

    0

    0 0 02 2 2 2 2 20 0 0 0 0

    2 20 0

    2 2 2 20 0

    0

    since - , :

    ( ) (( )( )) 4 ( )

    ( )4( ) ( / 2 ) 4 ( ) ( / 4 )

    now: calculating the normalization constant

    ( ) 1

    4substitution: : ( )

    (

    +∞

    −∞

    ∆ =

  • 7

    Stellar Atmospheres: Emission and Absorption

    13

    The damping constant

    • Radiation damping, classically (other damping mechanisms later)• Damping force (“friction“)

    power=force ⋅velocityelectrodynamics

    • Hence, Ansatz for frictional force is not correct• Help: define γ such, that the power is correct, when time-

    averaged over one period:

    classical radiation damping constant

    )(txmF &γ=( )2)()( txmtp &γ=

    ( )232

    )(32)( tx

    cetp &&=

    22 4

    03

    2 (where we used ( ) )3

    = = i tem x t x ec

    ωγ ω ω

    3

    20

    2

    0 32

    mceωω ωγ =⇒≈

    Stellar Atmospheres: Emission and Absorption

    14

    Half-width

    Insert into expression for FWHM:2 2

    0FWHM 3

    24FWHM FWHM

    FWHM FWHM2 2

    42 3

    4 1.18 10 Å3

    emc

    c emc

    π νγνπ

    ν λ πλ νν λ ν

    ∆ = =

    ∆ ∆= ⇒ ∆ = ∆ = = ⋅

  • 8

    Stellar Atmospheres: Emission and Absorption

    15

    The absorption cross-section

    Definition absorption coefficient κwith nlow = number density of absorbers:

    absorption cross-section (definition), dimension: areaSeparating off frequency dependence: Dimension : area ⋅ frequency

    Now: calculate absorption cross-section of classical harmonicoscillator for plane electromagnetic wave:

    dsIdI νν νκ )(−=low)()( nνσνκ =

    )(νσ)()( 0 νϕσνσ =

    )1()(8

    ),( 20

    0

    −′−=′

    =

    µδννδπ

    µνν

    ω

    EcI

    eEE tix

    Stellar Atmospheres: Emission and Absorption

    16

    Power, averaged over one period, extracted from the radiation field:

    On the other hand:

    Equating:

    Classically: independent of particular transitionQuantum mechanically: correction factor, oscillator strength

    4 2 2 2 2 20 0 0

    class.2 3 3

    4 2 2 2 3 2 20 0 0

    2 3 2 2 20

    2( ) with 3 3

    3 ( ) ( )3 2 4 8

    = = =

    = =

    e E epm c mce E mc e Epm c e m

    π ν ωϕ ν γ γγ

    π ν ϕ ν ϕ νπ ν

    20

    2 22 00

    22

    0

    ( ) ( , ) ( )8

    ( ) ( )8 8

    ( ) ( ) 0.026537 cm Hz

    cp I d d E

    e Ec Em

    emc

    ν µ

    σ ν ν µ ν µ σ νπ

    σ ν ϕ νππσ ν ϕ ν σ

    ′ ′= =

    =

    = ⇒ =

    ∫ ∫

    )()( lu2

    lowlu

    2

    lu νϕπνκπσ fmcenf

    mce ==

    index “lu” stands for transition lower→upper level

  • 9

    Stellar Atmospheres: Emission and Absorption

    17

    Oscillator strengthsOscillator strengths flu are obtained by:• Laboratory measurements• Solar spectrum• Quantum mechanical computations (Opacity Project etc.)

    • Allowed lines: flu≈1, • Forbidden:

  • 10

    Stellar Atmospheres: Emission and Absorption

    19

    Extension to emission coefficient

    Alternative formulation by defining Einstein coefficients:

    Similar definition for emission processes:

    profile function, complete redistribution:

    induced 0up ul

    spontaneous 0up ul

    ( )4

    ( )4

    hn B I

    hn A

    ν ν

    ν

    νη ψ νπνη ψ νπ

    =

    =

    0low lu

    20

    lu lu

    hv( ) n B ( )4hv e i.e. B f 4 mc

    κ ν = ϕ νπ

    π=π

    )(νψ )()( νψνϕ =

    Stellar Atmospheres: Emission and Absorption

    20

    Relations between Einstein coefficients

    Derivation in TE; since they are atomic constants, theserelations are valid independent of thermodynamic state

    In TE, each process is in equilibrium with its inverse, i.e., within one line there is no netto destruction or creation of photons (detailed balance)

    ( )( )

    0 0 0ul up ul up lu low

    ul ul up lu low

    low lu up ul up ul

    1

    ul low lu

    ul up ul

    TE: ( )4 4 4

    ( ) ( )

    (

    emitted intensity absorbed inte

    )

    nsity

    ( ) 1

    h h hB I n A n B I n I B T

    B B T A n B B T n

    B T n B n B n A

    A n BB TB n B

    ν ν ν ν

    ν ν

    ν

    ν

    ν ν νπ π π

    + = =

    + =

    − =

    = −

    =

  • 11

    Stellar Atmospheres: Emission and Absorption

    21

    Relations between Einstein coefficients

    ( )

    0

    0

    0

    1

    up upul low lu

    ul up ul low low

    1

    ul low lu

    ul up ul

    3 102

    ( ) 1 with Boltzmann equation:

    ( ) 1 comparison with Planck blackbody radiation:

    2( ) 1

    h kT

    h kT

    h kT

    n gA n BB T eB n B n g

    A g BB T eB g B

    hB T ec

    νν

    νν

    νν

    ν

    = − =

    = −

    = −

    ⇒3

    ul 02

    ul

    low lulow lu up ul

    up ul

    2

    1

    A hB cg B g B g Bg B

    ν=

    ⇒ = ⇒ =

    Stellar Atmospheres: Emission and Absorption

    22

    Relation to oscillator strength

    dimension

    Interpretation of as lifetime of the excited state

    order of magnitude:at 5000 Å:lifetime:

    2 2

    lu lu0

    2 2up up

    ul lu lulow low 0

    3 2 2 2up up0 0

    ul ul lu ul lu2 3low low

    4

    4

    2 8 3

    eB fmchvg g eB B fg g mchv

    g ghv e vA B f fc g mc g

    π

    π

    π γ

    =

    = =

    = = = ulA 1 time

    ul1 A

    ulul γ≈A18 s10 −

    s10 8−

  • 12

    Stellar Atmospheres: Emission and Absorption

    23

    Comparison induced/spontaneous emission

    When is spontaneous or induced emission stronger?

    At wavelengths shorter than λ∗ spontaneous emission isdominant

    ( )***

    *

    spontaneous 3 2ul * up ul *

    induced * * 2 3ul * up ul *

    **

    *

    *

    with ( ) 4 21 1

    ( ) ( ) 4 ( ) 2

    : 1 2 ln 2

    e.g. 10000K : 20000 A

    50000K : 4160 A

    v v

    h kTv

    v v

    h kT

    *

    *

    I BA h n A h c e

    B T B h n B B T c h

    e h kT

    T

    T

    ν

    ν

    ν

    ν ψ ν πη νη ν ψ ν π ν

    ν

    λ

    λ

    =

    = = = −

    = ⇒ = ⇒ =

    = =

    = =

    o

    o

    Stellar Atmospheres: Emission and Absorption

    24

    Induced emission as negative absorptionRadiation transfer equation:

    Useful definition: κ corrected for induced emission:

    spontaneous induced

    spontaneous induced

    induced0 0lu lu low lu ul up

    with

    ( ), ( )4 4

    = − = +

    = + −

    = = v

    dI IdsdI Ids

    h hB n B n I

    νν ν ν ν ν

    νν ν ν

    η κ η η η

    η η κ

    ν νκ ϕ ν η ϕ νπ π

    ( )spontaneous 0ul up lu low2

    lowlu lu low up

    up

    3 2spontaneous 0 lowlu lu up2

    up

    ( ) 4

    ( )

    2 ( )

    dI hB n B n Ids

    ge f n nmc g

    h ge f nc mc g

    νν ν

    νη ϕ νπ

    πκ ϕ ν

    ν πη ϕ ν

    = + −

    = −

    =

    transition low→up

    So we get (formulated withoscillator strength insteadof Einstein coefficients):

  • 13

    Stellar Atmospheres: Emission and Absorption

    25

    The line source functionGeneral source function:Special case: emission and absorption by one line transition:

    • Not dependent on frequency• Only a function of population numbers• In LTE:

    κηvvS =

    ( )1

    up

    low

    low

    up2

    30lu

    uplowlow

    up

    up2

    30

    0upullowlu

    0upul

    lu

    lulu

    12

    -

    2

    )(4

    )(4

    −=

    =−

    ==

    nn

    gg

    chvS

    nngg

    nchv

    vhvnBnB

    vhvnAS

    v

    vv

    ϕπ

    ϕπ

    κη

    [ ] ),(12 01230lu 0 TvBe

    chvS v

    kThvv =−=

    Stellar Atmospheres: Emission and Absorption

    26

    Every energy level has a finite lifetime τ against radiative decay (except ground level)

    Heisenberg uncertainty principle:Energy level not infinitely sharpq.m. ⇒ profile function = Lorentz profile

    Simple case: resonance lines (transitions to ground state)example Lyα (transition 2→1):example Hα (3→2):

    Line broadening: Radiation damping

    ∑<

    =ul

    ul1 Aτ

    h=⋅∆ τE

    ∑∑

  • 14

    Stellar Atmospheres: Emission and Absorption

    27

    Line broadening: Pressure broadening

    Reason: collision of radiating atom with other particles⇒Phase changes, disturbed oscillation

    t0 = time between two collisions

    0( ) ~ i tE t e ω

    Stellar Atmospheres: Emission and Absorption

    28

    Line broadening: Pressure broadening

    Reason: collision of radiating atom with other particles⇒Phase changes, disturbed oscillation

    Intensity spectrum (=power spectrum) of the cut wave train:

    t0 = time between two collisions

    0

    0

    0

    21

    202/ 2

    10/ 2

    ~ Fourier transform

    sin2( ) ~

    2−

    − = −

    ∫t

    i t i t

    t

    I

    tI e e dtω ω

    ω ω

    ω ω ω

    0( ) ~ i tE t e ω

  • 15

    Stellar Atmospheres: Emission and Absorption

    29

    Line broadening: Pressure broadeningProbability distribution for t0

    Averaging over all t0 gives

    Performing integration and normalization gives profile function of intensity spectrum:

    i.e. profile function for collisional broadening is a Lorentz profile with

    ∫∞

    −⋅=

    00

    /2

    00 /22

    sinconst)( 0 τωωωωω τ dtetI tv

    ( )0 /0 0 0( ) average time between two collisionstW t dt e dtτ τ τ−= =

    ( ) ( )220 11)(

    τωωπτωϕ

    +−=

    12 , ~ = particle density of colliders approximately constant

    -N NN γ γ

    γ τ τγ

    =′ ′= ⋅

    (to calculate γ´: calculation of τ necessary; for that: assumption about phase shift needed, e.g., given by semi-classical theory)

    Stellar Atmospheres: Emission and Absorption

    30

    Line broadening: Pressure broadening• Semi-classical theory (Weisskopf, Lindholm), „Impact Theory“

    Phase shifts ∆ω:

    find constants Cp by laboratory measurements, or calculate

    • Good results for p=2 (H, He II): „Unified Theory“– H Vidal, Cooper, Smith 1973– He II Schöning, Butler 1989

    • For p=4 (He I)– Barnard, Cooper, Shamey; Barnard, Cooper, Smith; Beauchamp et al.

    ppAnsatz: C r , p 2,3, 4,6 , r(t) distance to colliding particle∆ω = = =

    hydrogen-like ionsneutral atoms with each other, H+Hionsmetals + H

    linear Stark effectresonance broadeningquadratic Stark effectvan der Waals broadening

    2346

    dominant atnamep=

    Film logg

  • 16

    Stellar Atmospheres: Emission and Absorption

    31

    Thermal broadeningThermal motion of atoms (Doppler effect)Velocities distributed according to Maxwell, i.e.

    for one spatial direction x (line-of-sight)Thermal (most probable) velocity vth:

    kTmxx

    xew2

    A v21~)v( −

    ( )

    2 2th

    2 2 2th

    1/ 24th A

    th

    v vx x

    0

    v vth th

    0 0 th

    x

    v 2 12.85 10 A km/s

    example: T 6000K, A 56 (iron): v 1.33 km/s

    i.e. (v ) , with (v ) v 1 we obtain:

    1C v C v x 1 v 1v

    (v )

    x

    x

    x x x

    xx

    x

    kT m T

    w C e w d

    e d e d C C

    w

    ππ

    ∞−

    ∞ ∞− −

    = =

    = = =

    = ⋅ =

    ⋅ = ⋅ = ⇒ = ⇒ =

    =

    ∫ ∫2 2

    thv v

    th

    1v

    xeπ

    Stellar Atmospheres: Emission and Absorption

    32

    Line profile

    Doppler effect:profile function:

    Line profile = Gauss curve– Symmetric about ν0– Maximum:– Half width:– Temperature dependency:

    ccth

    0

    th

    0

    v , v =∆=∆νν

    νν

    02 2

    th

    0

    2 20 th

    01

    th

    ( )

    th

    (v ) ( ) , with 1 we obtain:

    1( )

    ν

    x xν

    Cw e ( )dνcν

    ν ν

    ν ν ν

    νϕ ν ϕ νπ

    ϕ νπ

    +∞−∆ ∆

    −∞

    − − ∆

    ⇒ = =∆

    =∆

    ∫πth

    1Maxv∆

    =

    Max21

    0ν ν

    )(νϕ

    FWHM

    πth1 v∆ththFWHM 67.12ln2 vvv ∆=∆=∆

    Tv ~th∆

  • 17

    Stellar Atmospheres: Emission and Absorption

    33

    Examples

    At λ0=5000Å:T=6000K, A=56 (Fe): ∆ λth=0.02ÅT=50000K, A=1 (H): ∆ λth=0.5ÅCompare with radiation damping: ∆ λFWHM=1.18 10-4Å

    But: decline of Gauss profile in wings is much steeper thanfor Lorentz profile:

    In the line wings the Lorentz profile is dominant

    210 43th

    2 6rad

    Gauss (10 ) : e 10 Lorentz (1000 ) : 1 1000 10

    − −

    ∆λ ≈≈

    ∆λ ≈

    Stellar Atmospheres: Emission and Absorption

    34

    Line broadening: Microturbulence

    Reason: chaotic motion (turbulent flows) with length scales smaller than photon mean free path

    Phenomenological description:

    Velocity distribution:

    i.e., in analogy to thermal broadeningvmicro is a free parameter, to be determined empirically

    Solar photosphere: vmicro =1.3 km/s

    2micro

    2 vv

    microx v

    1)v( xew x−=

    π

  • 18

    Stellar Atmospheres: Emission and Absorption

    35

    Joint effect of different broadening mechanisms

    Mathematically: convolutioncommutative:multiplication of areas:

    Fourier transformation:

    y y xx

    xprofile A + profile B = joint effect

    dxxfdxxfdxxff BABA ∫∫∫∞

    ∞−

    ∞−

    ∞−

    ⋅=∗ )()())((

    ABBA ffff ∗=∗∫∞

    ∞−

    −=∗ dyyxfyfxff BABA )()())((

    BABA ffff ⋅∗ =~~

    2~

    πi.e.: in Fourier space the convolution is a multiplication

    Stellar Atmospheres: Emission and Absorption

    36

    Application to profile functionsConvolution of two Gauss profiles (thermal broadening + microturbulence)

    Result: Gauss profile with quadratic summation of half-widths; proof by Fourier transformation, multiplication, and back-transformationConvolution of two Lorentz profiles (radiation + collisional damping)

    Result: Lorentz profile with sum of half-widths; proof as above

    2 2 2 2

    2 2 2 2 2C

    ( ) 1 ( ) 1

    G ( ) ( ) ( ) 1 with C

    x A x BA B

    x CA B

    G x A e G x B e

    x G x G x C e A B

    π π

    π

    − −

    = =

    = ∗ = = +

    2 2 2 2

    2 2

    / /( ) ( )

    /( ) ( ) ( ) with

    A B

    C A B

    A BL x L xx A x B

    CL x L x L x C A Bx C

    π π

    π

    = =+ +

    = ∗ = = ++

  • 19

    Stellar Atmospheres: Emission and Absorption

    37

    Application to profile functionsConvolving Gauss and Lorentz profile (thermal broadening + damping)

    ( )2 2

    0

    2

    2( )

    220

    0 0

    2

    1 / 4( ) ( ) / 4

    depends on , , : ( ´) ´ ´

    Transformation: v: : 4 : ´

    /1( )

    − − ∆

    −∞

    = =∆ − +

    = ∗ , ∆ = −

    = − = = −

    ∆= =+∆

    D

    D

    D

    D D D

    y D

    D

    G e L( )

    V G L ∆ V( ) G L(v )d

    ( ) ∆ a /( π∆ ) y ( ) ∆

    aG y e L(y)y

    ν ν ν γ πν νν π ν ν γ π

    ν ν γ ν ν ν ν ν

    ν ν ν γ ν ν ν ν

    ν πν π

    2

    2

    2 2 2

    2 2

    Voigt fu

    1 (v )

    1Def: ( , v) with ( , v)(v )

    , no analytical representation possible. (approximate formulae or numerical evaluation)

    Norm

    nc

    a

    o

    l

    ti n

    ∞ −

    −∞

    ∞ −

    −∞

    =− +∆

    = =− +∆

    y

    D

    y

    D

    a eV dya y a

    a eV H a H a dyy a

    πν π

    πν π

    ization: ( , v) v∞

    −∞

    =∫ H a d π

    Stellar Atmospheres: Emission and Absorption

    38

    Voigt profile, line wings

  • 20

    Stellar Atmospheres: Emission and Absorption

    39

    Treatment of very large number of linesExample: bound-bound opacity for 50Å interval in the UV:

    Direct computation would require very much frequency points• Opacity Sampling• Opacity Distribution Functions ODF (Kurucz 1979)

    MöllerDiploma thesisKiel University 1990

    Stellar Atmospheres: Emission and Absorption

    40

    Bound-free absorption and emission

    Einstein-Milne relations, Milne 1924: Generalization of Einstein relations to continuum processes: photoionizationand recombination

    Recombination spontaneous + inducedTransition probabilities:

    I) number of photoionizationsII) number of recombinationsPhoton energyIn TE, detailed balancing: I) = II)

    [ ][ ]

    : probability for photoionization in

    (v) : spontaneous recapture probability of electron in v, v v(v) : corresponding induced probability v=electron velocity

    P d

    F dG

    ν ν ν ν, ++

    [ ] dtdIGFnn v vv)v()v()v(eup +dtdIPn vv νlow

    v vv21 2ion dhmdvmEhv =→+=

  • 21

    Stellar Atmospheres: Emission and Absorption

    41

    Einstein-Milne relations[ ]

    [ ]low up e

    low up e

    13 1low

    2up e

    3

    2

    low

    up e

    low up

    (v) (v) (v) with

    (v) (v) (v)

    (v) 21 1(v) (v) (v)

    (v) 2(v)

    (v) (v)

    f

    v

    v

    h kTv

    h kTv

    n P I dvdt n n F G I h m dvdt I B

    n P B n n F G B h m

    n P mF hB eG n n hG c

    F hG c

    n P m en n hG

    n n

    ν ν ν ν

    ν ν

    νν

    ν

    ν

    ν

    −−

    = + =

    = +

    = − = −

    ⇒ =

    ⇒ =

    • ion

    2

    3/ 2uplow

    2up e low

    3/ 2v 2 2

    e e e

    2 2rom Saha equation:

    (v) : Maxwell distribution: (v) v 4 v v2

    E kT

    m kT

    gn mkT en n h g

    mn n d n e dkT

    π

    ππ

    =

    • =

    Stellar Atmospheres: Emission and Absorption

    42

    Einstein-Milne relations

    Einstein-Milne relations, continuum analogs to Aji, Bji, Bij

    2ion

    3/ 2up 3/ 2

    up

    low

    3

    22

    low2

    up 23

    lo

    / 2up

    2e low

    e

    3/ 2v 2 2

    e

    w

    (v)

    2 4 v

    8

    (v)

    4 v2

    v(v

    2 2

    )

    hv kT

    m kTE kT

    v

    hv kT

    v

    n

    mn ekT

    P h eG m

    h em

    gh m m

    nn

    gmkT

    m h ggP m

    G h g

    en h g

    π

    ππ

    π

    π

    − −

    =

    =

    =

    =

  • 22

    Stellar Atmospheres: Emission and Absorption

    43

    Absorption and emission coefficients

    absorption coefficient (opacity)emission coefficient (emissivity)

    And again: induced emission as negative absorption

    and (using Einstein-Milne relations)

    LTE:

    vv nhvPnv σκ lowlow)( ==

    [ ] mvhIGFnnv vv /)v()v()v()( 2eup +=η

    2low up e

    *up up /

    low e low uplow low

    ( ) (v) (v) /

    (v)1 (v) ... h kT

    n P h n n G h m

    n nG hn P h n n n en P m n

    ν

    νν ν

    ν

    κ ν ν ν

    ν σ −

    = −

    = − = = −

    [ ]

    vv

    v

    kThvv

    Bvv

    mhFnnvehvPnv

    )()(

    /v)v()v()(

    1)(2

    eup

    low

    κη

    ηκ

    =

    =

    −= −

    M

    *up /

    up3low

    2( ) ...c

    h kTnh n en

    νν ν

    νη ν σ −

    = =

    definition. of cross-section σ

    Stellar Atmospheres: Emission and Absorption

    44

    Continuum absorption cross-sections

    H-like ions: semi-classical Kramers formula

    Quantum mechanical calculations yield correction factors

    Adding up of bound-free absorptions from all atomic levels: example hydrogen

    ( )3th th th

    318 2

    th th 2 22 2 2

    for ( )0 else

    8 threshold frequency, 7.906 10 cm3 3

    principal quantum number, Z nuclear charge

    h n nZ Zm ce

    n

    σ ν ν ν νσ ν

    ν σπ

    >=

    = = = ⋅

    ( )3th th bf bf( ) ( , ) , ( , ) Gaunt factorg n g nσ ν σ ν ν ν ν=

    ∑=

    =max

    1bf

    totbf )()(

    n

    nn

    n nvv σκ

  • 23

    Stellar Atmospheres: Emission and Absorption

    45

    Continuum absorption cross-sections

    Optical continuum dominatedby Paschen continuum

    Stellar Atmospheres: Emission and Absorption

    46

    The solar continuum spectrum and the H- ionH- ion has one bound state, ionization energy 0.75 eVAbsorption edge near 17000Å,hence, can potentially contribute to opacity in optical band

    H almost exclusively neutral, but in the optical Paschen-continuum, i.e. population of H(n=3) decisive:

    Bound-free cross-sections for H- and H0 are of similar orderH- bound-free opacity therefore dominates the visual continuum

    spectrum of the Sun

    0 0

    4 7.5eSun: 6000K, log 13.6 Saha equation: 10 , 10H H

    H H

    n nT n

    n n+ −− −= = = =

    500106103

    )3()1(

    )1()3(

    1062

    18)1()3(

    10

    8

    104.23/eV1.12

    1

    3

    0

    0

    00

    0

    0

    =⋅⋅=

    ==

    ==

    =

    ⋅=====

    −−−

    −−

    nnnn

    nnn

    nnn

    eegg

    nnnn

    H

    H

    H

    H

    H

    H

    kT

    H

    H

  • 24

    Stellar Atmospheres: Emission and Absorption

    47

    The solar continuum spectrum and the H- ion

    Ionized metals deliver free electrons to build H-

    Stellar Atmospheres: Emission and Absorption

    48

    The solar continuum spectrum and the H- ion

  • 25

    Stellar Atmospheres: Emission and Absorption

    49

    The solar continuum spectrum and the H- ion

    Stellar Atmospheres: Emission and Absorption

    50

    Scattering processes

    Thomson scattering at free electronsAbsorption coefficient follows from power of

    harmonic oscillator ( Thomson cross-section)

    Thomson cross-section is wavelength-independent

    eeσκ n=eσ

    ( ) ( )4 2 4

    022 3 22 2 2

    0

    04 2

    20e 02 3

    425 2

    e 2 4

    3 2

    free electrons: no resonance frequency, no friction: 0; 0

    , on the other hand we had 3 8

    8 6.65 10 cm3

    e Epm c

    e E cp p Em c

    em c

    νν ν γ π ν

    ν γ

    σπ

    πσ −

    = − + = =

    → = =

    = = ⋅

  • 26

    Stellar Atmospheres: Emission and Absorption

    51

    Scattering processes

    Rayleigh scattering of photons on electrons bound in atomsor molecules

    Rayleigh scattering on Lyα important for stellar spectral typesG and K

    ( ) ( )4 2 4

    022 3 22 2 2

    0

    04 2 4

    20R 02 3 4

    4 4 4

    R lu e lu2 4 4 4

    4

    R e lu 4

    3 2

    semi-classical:

    on the other hand we had 3 8

    83

    ( )

    lu

    lu

    lu lu

    ll lu

    e Epm c

    e E cp p Em c

    e f fm c

    n f

    νν ν γ π ν

    ν ν νν σν π

    π ν νσ σν ν

    νκ ν σν

    = − +

  • 27

    Stellar Atmospheres: Emission and Absorption

    53

    Two-photon processes

    Stellar Atmospheres: Emission and Absorption

    54

    Free-free absorption and emissionAssumption (also valid in non-LTE case):Electron velocity distribution in TE, i.e. Maxwell distribution

    Free-free processes always in TESimilar to bound-free process we get:

    generalized Kramers formula, with Gauntfaktor from q.m.• Free-free opacity important at higher energies, because

    less and less bound-free processes present• Free-free opacity important at high temperatures

    ),()(/)()( ffffff TvBvvvS vvv == κη

    ( )ff h / kTff e k2 2 6

    ff ff3/ 2 3

    ( ) ( )n n 1 e

    16 Z e( ) g (n, ,T)hc(2 T

    1m)3 3

    1

    − νκ ν = σ ν −

    πν

    σ ν = ⋅ ⋅ νπ

    1/ 2 3/ 2ffff bf bf~ T , but ~ T (Saha), therefore: / T

    − −σ σ κ κ

  • 28

    Stellar Atmospheres: Emission and Absorption

    55

    Computation of population numbers

    General case, non-LTE:In LTE, just

    In LTE completely given by:• Boltzmann equation (excitation within an ion)• Saha equation (ionization)

    ( , , )i i vn n T Iρ=( , )i in n Tρ=

    Stellar Atmospheres: Emission and Absorption

    56

    Boltzmann equationDerivation in textbooks

    Other formulations:• Related to ground state (E1=0)

    • Related to total number density N of respective ion

    ( ) / statistical weight excitation energy

    i jE E kT ii i

    ij j

    gn g e En g

    − −=

    kTEii iegg

    nn /

    11

    −=

    1 1

    1 1 1

    1

    1

    1

    /

    /partition function(

    1

    , with ( ) :)

    = = =

    = =→

    ∑ ∑ ∑j

    jE kTj

    i i i i

    jj j

    i i

    E kTj

    n n n nn gnn n n n nn

    g e

    U Tn n g U g

    nT

    Ne

  • 29

    Stellar Atmospheres: Emission and Absorption

    57

    Divergence of partition function

    e.g. hydrogen:

    Normalization can be reached only if number of levels is finite.Very highly excited levels cannot exist because of interaction with neighbouring particles, radius H atom:At density 1015 atoms/cm3 → mean distance about 10-5 cmr(nmax) = 10-5 cm → nmax ~43Levels are “dissolved“; description by concept of occupation probabilities pi (Mihalas, Hummer, Däppen 1991)

    i

    2i i i Ion

    E / kTi

    g 2n g , E E

    i.e. g ei i

    i

    lim lim

    lim −= → = ∞ =

    = ∞→ ∞ → ∞

    → ∞

    Nni

    i =∑

    20)( nanr =

    with w0 hen → ∞→ →i i iig pg p i

    Stellar Atmospheres: Emission and Absorption

    58

    Hummer-Mihalas occupation probabilities

  • 30

    Stellar Atmospheres: Emission and Absorption

    59

    Saha equationDerivation with Boltzmann formula, but upper state is now a 2-particle state (ion plus free electron)Energy:Statistical weight:Insert into Boltzmann formula

    Statistical weight of free electron =number of available states in interval[p,p+dp] (Pauli principle):

    2ion eE E p 2m p=electron momentum)= +

    )(up pGgg ⋅=

    2ion e low

    2up low e

    up up ( 2 ) /

    low low

    ( ) /up up 2

    low low 0

    ( ) ( )

    ( )

    E p m E kT

    E E kT p m kT

    n p g G pe

    n gn g

    e G p e dpn g

    − + −

    ∞− − −

    =

    → = ∫

    3

    2 2 2 3e e

    phase space volume( )( ) 2 2 spinsphase space cell

    ( ) 4 1 4 ( ) 8x y z

    d pG p dph

    d p dxdydz dp dp dp dV p dp n p dp G p p h nπ π π

    Ω=

    Ω = ⋅ = ⋅ = ⋅ → =

    weight of ion * weight of free electron

    Summarize over all final statesBy integration over p

    Stellar Atmospheres: Emission and Absorption

    60

    Saha equationInsertion into Boltzmann formula gives:

    Saha equation for two levels in adjacent ionization stages

    Alternative:

    ( )

    ( )

    2up low e

    2up low

    up low

    up

    ( ) /up up 22e3

    low low e0

    3/ 2( ) /up 2e3

    low e 0

    3/ 2( ) /upe3

    low e

    3/ 2(up upe

    3low e low

    8 with / 2

    8 2

    8 24

    22

    E E kT p mkT

    E E kT x

    E E kT

    E

    n ge p e dp x p m kT

    n g h ng

    e m kT x e dxg h n

    ge m kT

    g h n

    n gm kT en n h g

    π

    π

    π π

    π

    ∞− − −

    ∞− − −

    − −

    = =

    =

    =

    =

    low ) /E kT−

    33/216/)(

    low

    up2/3

    low

    eup cm K 1007.2 )( lowup −−− ⋅=== Cegg

    CTTf

    nnn kTEE

  • 31

    Stellar Atmospheres: Emission and Absorption

    61

    Example: hydrogen

    Model atom with only one bound state:

    5

    low I I

    up II II

    3/ 21.5810 K/II

    I

    II I

    II

    22

    (H I ground state) 2(H II ) 1

    1 ( )2

    pure hydrogen: ,

    ionization degree:

    (( )1

    Te

    e II

    e

    n n n gn n n g

    n n T e f Tn C

    n n N n nn n xN N

    x N f Tf T xx

    − ⋅

    = = == = =

    = =

    = = +

    = =

    ⇒ = ⇒ +−

    2

    ) ( ) 0

    ( ) ( ) ( )2 2

    ( , )

    f TxN N

    f T f T f TxN N N

    x x T N

    − =

    ⇒ = − + +

    ⇒ =

    Stellar Atmospheres: Emission and Absorption

    62

    Hydrogen ionization

    Ioni

    zatio

    n de

    gree

    x

    Temperature / 1000 K

  • 32

    Stellar Atmospheres: Emission and Absorption

    63

    More complex model atoms

    j=1,...,J ionization stagesi=1,...,I(j) levels per ionization stage jSaha equation for ground states of ionization stages j and j+1:

    With Boltzmann formula we get occupation number of i-th level:

    kTEegg

    kTmhnnn /

    11j

    1j2/3

    e

    3

    e1j1j1

    jIon

    221

    ++

    =

    π

    kTEE

    kTEkTE

    eTCnngg

    n

    egg

    TCnnegg

    nnn

    n

    /)(2/31e1j1

    11j

    ijij

    /

    11j

    1j2/31e1j1

    /

    1j

    ij1j

    1j

    ijij

    ji

    jIon

    jIon

    ji

    −−+

    +

    +

    −+

    =⇒

    ==

    Stellar Atmospheres: Emission and Absorption

    64

    More complex model atoms

    Related to total number of particles in ionization stage j+1

    Nj/Nj+1

    kTEEkTEE eTCnNUg

    neTCnNUg

    gg

    n

    NUg

    nUg

    Nn

    Ug

    nn

    Nn

    /)(2/31e1j

    1j

    ijij

    /)(2/31e1j

    1j

    11j

    11j

    ijij

    1j1j

    11j11j

    1j

    11j

    1j

    11j

    1j

    11j

    11j

    1ij

    1j

    1ij

    ji

    jIon

    ji

    jIon

    1 1i

    −−+

    +

    −−+

    +

    +

    +

    ++

    ++

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    =⇒=⇒

    =→⋅== =

    )(je/2/3

    1e1j

    j

    1j

    j

    j/2/3

    1e1j

    1j

    i

    /ij

    /2/31e

    1j

    1j

    i

    /)(2/31e1j

    1j

    ij

    iijj

    jIon

    jIon

    ji

    jIon

    ji

    jIon

    TneTCnUU

    NN

    UeTCnUN

    egeTCnUN

    eTCnNUg

    nN

    kTE

    kTEkTEkTE

    kTEE

    Φ==

    ==

    ==

    ++

    +

    +−−

    +

    +

    −−+

    +

    ∑∑

  • 33

    Stellar Atmospheres: Emission and Absorption

    65

    Ionization fraction

    j j j 1 J-1

    J j 1 j 2 J

    J Jj J-1 J-1 J-2 J-1 1

    j J Jj 1 j 1 J J J J-1 J 2

    j j 1 J-1

    j j j 1 j 2 JJ

    J-1 J-1 J-2 J-1 1

    J J J-1 J 2J-1

    e kj k j

    e kk

    1

    1

    ( )

    1 ( )

    J

    N N N NN N N N

    N N N N N NN N N NN N N N N N

    N N NN N N N NN

    N N N N NN N NN N N N N

    n TNN n T

    +

    + +

    = =

    +

    + +

    =

    =

    = ⋅ ⋅ ⋅

    = = = + + ⋅ + +

    ⋅ ⋅ ⋅= =

    + + ⋅ + +

    Φ=

    + Φ

    ∑ ∑

    K

    K L

    K

    K L

    J-1J

    m 1 m=∑∏

    Stellar Atmospheres: Emission and Absorption

    66

    Ionization fractions

  • 34

    Stellar Atmospheres: Emission and Absorption

    67

    Summary: Emission and Absorption

    Stellar Atmospheres: Emission and Absorption

    68

    ● Line absorption and emission coefficients (bound-bound)32 2

    low 0 lowlu lu low up lu lu up2

    up up

    ( ) 2

    ( ) ( ) ( )

    = − =

    g h ge ef n n f nmc g c mc g

    νπ πκ ν η νϕ ν ϕ ν

    profile function, e.g., Voigtprofile( ) =ϕ ν2

    2 21( , v)

    (v )

    ∞ −

    −∞

    =− +∆ ∫

    y

    D

    eV a dyy aν π

    ● Continuum (bound-free)*

    up h / kTlow up

    low

    n(v) n n e

    n− ν

    ν

    κ = σ −

    *up h /kT

    up3low

    n2h( ) n ec n

    − νν ν

    νη ν = σ

    ● Continuum (free-free), always in LTE

    ( )ff -h / kTff e k( ) ( )n n 1-e νκ ν = σ ν ff ff e k( ) ( )n n B ( ,T)νη ν = κ ν ν

    eeσκ n=● Scattering (Compton, on free electrons) e en Jν νη (ν) = σ

    Total opacity and emissivity add up all contributions, then source function S ( )ν ν= η /κ ν

  • 35

    Stellar Atmospheres: Emission and Absorption

    69

    Excitation and ionization in LTE

    ( ) /− −= low upE E kTlow lowup up

    n g en g

    up low

    3 /2( ) /up upe

    3low e low

    22 − − =

    E E kTn gm kT en n h g

    π

    Boltzmann

    Saha