Download - Turbulence: from hydrodynamics to the solar wind plasma

Transcript
Page 1: Turbulence: from hydrodynamics to the solar wind plasma

Turbulence:fromhydrodynamicstothesolarwind

plasma-AnIntroduc:on

PinWu(Penny)

Kolmogorov

(googleimage)

The5thSOLARNETsummerschool,Belfast,UnitedKingdom,August5,2016

Page 2: Turbulence: from hydrodynamics to the solar wind plasma

Whystudyturbulenceinsolarphysics?

•  Coronalhea:ngproblem•  Solarwindhea:ngproblem

Matthaeus et al., 1999

Page 3: Turbulence: from hydrodynamics to the solar wind plasma

WhatisTurbulence?

?Googleimage

Page 4: Turbulence: from hydrodynamics to the solar wind plasma

Startwithhydrodynamicsdescrip:ons

•  Notepar:cularlytheNavier-Stokesequa:on*(momentumequa:on)

•  ReynoldsnumbersR=Lu/νRa:oofiner:altoviscousforceDimensionless *Note,usuallyanalyzedwithcon:nuityequa:on

andincompressibleassump:onunderspecifiedini:alcondi:onandboundarycondi:on(B.C.).

∂u∂t

+ u ⋅∇u= −∇Pρ

+ν∇2uNonlinear!

∇⋅u = 0

∂ρ∂t

+∇⋅(ρu) = 0

Page 5: Turbulence: from hydrodynamics to the solar wind plasma

R=1.54

PhotosfromVonDyke(1982)

R=9.6

R=13.1

R=26

R=41

R=140

VonKarmanVortexStreet

AsReynoldnumberincreases,thesymmetriespermidedbytheNavier-Stocksequa:onandboundarycondi:onaresuccessivelybroken.

Page 6: Turbulence: from hydrodynamics to the solar wind plasma

R=1800R=240

Frisch(1995)Grid

Twocylinders

FullydevelopedTurbulence:symmetriesrestored.LordKelvin(1887):homogeneousandisotropicturbulence.

Page 7: Turbulence: from hydrodynamics to the solar wind plasma

WhatisTurbulence?TurbulentorLaminar?Iner:alForcesv.s.Viscousforce?Reynoldnumberistheessen:al.

Chao:cIrregularMixingRota:onal,vor:cityDissipa:veSta:s:calordeterminis:c?

ω = ∇× u

Page 8: Turbulence: from hydrodynamics to the solar wind plasma

WhathavewelearnedfromHydrodynamics?

Richardsoneddycascadephenomenology(1922)

Outerscale(Integratedscales)AnisotropicIner:alscale(Taylormiscroscale)Innerscale(KolmogorovScales)Isotropicandhomogeneous

L

η<<l<<L

Page 9: Turbulence: from hydrodynamics to the solar wind plasma

Kolmogorov’sthreehypotheses.AthighR,1.  thesmall-scaleturbulentmo:onsaresta0s0callyisotropic(rota0on

invariant).2.  thesmal-scaleturbulentsta:s:csareuniversallyanduniquely

determinedbyνandenergydissipa:onrateε.Bydimensionalanalysis,Kolmogorovlengthscale,

3.  theiner:alrange(η<<l<<L)ishomogeneous(transla0oninvariant).Sta:s:cshereareuniversallyanduniquelydeterminedbythescalel(1/k)andenergydissipa:onrateε,independentofν.Bydimensionalanalysis,

E(k)~ε2/3k-5/3 Kolmogorov(1941),K41

WhathavewelearnedfromHydrodynamics?

Page 10: Turbulence: from hydrodynamics to the solar wind plasma

K41dimensionalanalysis

Thus,E(k)hasdimensionL3/T2

Dimensionofε(energydissipa:onrateperunitmass)isL2/T3

K41assumesE(k)onlydependsonεandk,Then,wemusthaveE(k)~ε2/3k-5/3

12< u2 >= E(k)dk

0

Page 11: Turbulence: from hydrodynamics to the solar wind plasma

OneexampleoftheexperimentalsuccessofK41

Champagne,1978

R=626

E(k)~ε2/3k-5/3

Page 12: Turbulence: from hydrodynamics to the solar wind plasma

Self-similar

1-Dexample:brownianmo:on

The“generalaspect”(sta:s:calproper:es)withinthemagnifica:onwindowisindependentofwherethewindowisposi:oned!

Frisch,1995

Page 13: Turbulence: from hydrodynamics to the solar wind plasma

Self-similar:preserva:onofstructurefunc:on

•  Self-Similar(symmetries:isotropicandhomogeneous)intheiner:alrange(equivalentoftheuniversalassump:oninK41).Thereexistsascalingexponenthforthe1storderstructurefunc:onδu(l)suchthat

whereincrementThep-thorderstructurefunc:onthuswhereζp=p/h.K41-3statesthatSponlydependsonεandl.Bydimensionalanalysis,thesecondorderstructurefunc:onS2~ε2/3l2/3.Thereforeh=1/3andζp=p/3.AndinfactSp(l)~εp/3lp/3.

δui (l) = ui (x)− ui (x − l)δu(λl) = λ hδu(l)

Sp(l) = 〈(δui (l))p 〉 ∝ lζ p

Page 14: Turbulence: from hydrodynamics to the solar wind plasma

Intermidency:dissipa:onrange(highk)isnotself-similar!(BatchelorandTownsend,1949)

VelocitysignalfromajetwithR=700

Samesignalsubjecttohigh-passfiltering,showingintermidentbursts

Gagne1980

Example

Hea:ngisbursty,patchy,andnon-uniform

Page 15: Turbulence: from hydrodynamics to the solar wind plasma

Moreexamplesofintermidentfunc:ons

Devil’sstaircase

Realityisseldomso“blackandwhite”.Howintermident?Needtointroduceintermidencymeasurement.

Page 16: Turbulence: from hydrodynamics to the solar wind plasma

MeasureofintermidencyQuan:ta:vely:Kurtosis(Flatness)

Visually:PDF(δui)*devia:onfromGaussian

Perfectlyself-similarcase:Gaussiansignals(Normalfunc:on).Caussianfluctua:onshaveaflatnessof3,independentoffilteringfrequency.

Fourthmomentaroundmeandividedbythefourthpowerofstandarddevia:onagain,velocityincrementNotekisscale(l)dependentThelargerthekurtosis,themoreintermident!

δui (l) = ui (x)− ui (x − l)

k(l) = µ4σ 4 =

〈(δui (l)− 〈δui (l)〉)4 〉

〈(δui (l)− 〈δui (l)〉)2 〉2

= 〈(δui (l))4 〉

〈(δui (l))2 〉2

*PDF=probabilitydistribu:onfunc:on Subedietal.,2014

Page 17: Turbulence: from hydrodynamics to the solar wind plasma

Intermidencyvisualiza:on:vor:cityfilaments

Vor:cityfield(VincentandMeneguzzi,1991)

Vor:cityfilament(highconcentra:onofvor:city)inturbulentwater(Boonetal.,1993)

Page 18: Turbulence: from hydrodynamics to the solar wind plasma

K41,data,modelsthatmodifiesK41

Frisch,1995Blackcircles,whitesquaresandblacktrianglesaredatafromAnselmet,(1984)

Page 19: Turbulence: from hydrodynamics to the solar wind plasma

Experimentallyvalidatedinwindtunnelmeasurements(BatchelorandTownsend,1949)

EnergydecayrateεiswridenasdU2/dtIntheplot

Decay(dissipa:on)rateεiscontrolledbyU=<u2>1/2(amplitude)andLintheouterscale,independentofviscosity(ordetaildissipa:onmechanism)!

SimilaritydecaywassuggestedbyTaylor(1935)andmadeprecisedbyvonKarmanandHowarth(1938).Itpostulatesthepreserva:onofshapeof2pointcorrela:onfunc:onsduringDecay(Essen:ally,arephrasingofK41).Deriveε=-aU3/LanddL/dt=bUwhereaandbareconstants.

vonKarmandecayinHydrodymanics(3rdorderlaw)

Page 20: Turbulence: from hydrodynamics to the solar wind plasma

Fromafluidperspec:ve,howdoesturbulenceinthesolarwindplasmadifferfromhydrodynamicTurbulence?

Navier-stocksequa:onbecomes

Addi:onalvariableBAddi:onalnonlineartermNeedonemoreequa:on

Note,here,BiswrideninAlfvenunit(sameunitasvelocityu)

∂u∂t

+ u ⋅∇u= −∇Pρ

+ν∇2u +B ⋅∇BNonlinear!Nonlinear!

Page 21: Turbulence: from hydrodynamics to the solar wind plasma

•  Maxwell’sEqua:ons

•  Ohm’slawJ=σ(E+u×B)•  Magne:cReynoldnumberRm=R=Lu/ηη=1/σisthemagne:cdiffusivityEliminateE,àInduc:onequa:on

Again,wecanwriteBinAlfvenunitintheinduc:onequa:onandthereazer.

Fromafluidperspec:ve,howdoesturbulenceinthesolarwindplasmadifferfromhydrodynamicTurbulence?

∂B∂t

+ u ⋅∇B = B ⋅∇u +η∇2BNonlinear! Nonlinear!

Page 22: Turbulence: from hydrodynamics to the solar wind plasma

Magneto-hydrodynamic(MHD)Turbulence

BcanbesplitintoameanfieldB0andafluctua:ngfieldb,B=B0+b.Definenewvariablestoreplacebandu,theElsässer(1950)variablesz±=u±b,Wecanrewriteourequa:onsintoWhereν±=½(ν±η),Nonlinearinterac:onsoccurbetweenthez±.

∂z±

∂t∓ (B0 ⋅∇)z

± + (z∓ ⋅∇)z± = −∇P+ν+∇2z± +ν−∇

2z∓

∂B∂t

+ u ⋅∇B = B ⋅∇u +η∇2B

∂u∂t

+ u ⋅∇u= −∇Pρ

+ν∇2u +B ⋅∇B

Page 23: Turbulence: from hydrodynamics to the solar wind plasma

OuterscalesL±:e-foldingdefini:onTwo-pointcorrela:onFindL±suchthatR±(L±)=1/e

l

L+L-

R± (l) = 〈z± (x) ⋅z± (x+ l)〉σ z±2

Page 24: Turbulence: from hydrodynamics to the solar wind plasma

∂z±

∂t∓ (B0 ⋅∇)z

± + (z∓ ⋅∇)z± = −∇P+ν+∇2z± +ν−∇

2z∓

Relevant:mescalesandturbulentmodels•  Alfven:meτA=L±/(kB0)•  Nonlinear:meτNL±=L±/(kzk±)

•  IK:Iroshnikov(1964)andKraichnan(1965)assumedz+andz-interactweaklyandlinearizedtheequa:onswithτAbeingtherelevant:me,theyderivedEu(k)~Eb(k)~(εB0)1/2k-3/2.

•  K41-like:Marsch(1990)assumedfundamentallynonlinear.τNL±istheinterac:on:meforeddies,theyderivedE±(k)~(ε±)4/3(ε)-2/3k-5/3.

•  Cri:calbalance(GoldreichandScridhar,1995):“compound”versionofIKandK41-likedescrip:ons:τA~τNL.Theyderived

andE⊥ (k⊥ )∝ k⊥−5/3 E||(k|| )∝ k||

−2

Page 25: Turbulence: from hydrodynamics to the solar wind plasma

Spectra:solarwindobserva:ons

-5/3

Magne:cfieldenergyspectrum(MadhaeusandGoldstein,1982)

Velocityspectrum(Podestaetal.,2007)

Page 26: Turbulence: from hydrodynamics to the solar wind plasma

Complica:on:B0

•  InthestrongB0case(B0>>b),theturbulentspectrumsplitsintotwoparts:anessen:ally2DTurbulencespectrumwithbothuandbperpendiculartoB0,andaweakerandmorenearlyisotropicspectrumofAlfvenwaves(MontgomeryandTurner,1981,MontgomeryandMadhaeus,1995).

•  MHDsimula:ons:MeanMagne:cfieldB0suppressestheenergycascadealongthedirec:onofthemeanmagne:cfieldàanisotropy(Shebalinetal.1983).

Page 27: Turbulence: from hydrodynamics to the solar wind plasma

2DTurbulencev.s.Slab

BrunoandCarbone(2013)Review:•  Helio(0.3-1AU)dataintheslowwind,Interplanetarysolar

wind,74-95%2Dturbulenceand5-26%slab(Bieberetal.,1996).

•  Inthepolarwind,50%2Dturbulenceand50%ofslab(Smith,2003).

•  Dassoetal.(2005),using5yearsofspacecrazobserva:onsatroughly1AU,showedthatfaststreamsaredominatedbyfluctua:onswithwavevectorsquasi-paralleltothelocalmagne:cfield(slab),whileslowstreamsaredominatedbyquasi-perpendicularfluctua:onwavevectors(2Dturbulence).

Page 28: Turbulence: from hydrodynamics to the solar wind plasma

∂z±

∂t∓ (B0 ⋅∇)z

± + (z∓ ⋅∇)z± = −∇P+ν+∇2z± +ν−∇

2z∓

MHDperspec:ve:Crosshelicity

Highalignmentofbandu(correspondstomaximumHc)resultsz+andz-alignmentandthusreducesthenonlineartermintheMHDequa:on.Waveandlineartermsmaydominate.Onthecontrary,lowHccorrespondstoamorenonlinearlyturbulentplasma.

Observa:onally,Robertsetal.(1987a,1987b)findthatwhenHcisnearlymaximalinfastwindfrom0.3-1AU,therewaslidleevidenceofturbulentevolu:on.Instead,fluctua:onsarehighlyAlfvenic.Ontheotherhand,MadhaeusandGoldstein(1982)findthatfor(sta:onary)intervalsspanningseveraldays,thespectrumofBisveryclosetok41’s-5/3scaling.

Hc = ∫u ⋅BdV

Page 29: Turbulence: from hydrodynamics to the solar wind plasma

∂z±

∂t∓ (B0 ⋅∇)z

± + (z∓ ⋅∇)z± = −∇P+ν+∇2z± +ν−∇

2z∓

Alfvenra:orA=Eu/EbSpecialcase:u=bandualignmentwithb(rA=1andmaximumHx))

z-vanishesLezwithz+=2b=2uandasimplerequa:onthatislinearlizableFluctua:onscanbehighlyAlfvenic.

∂z+

∂t− (B0 ⋅∇)z

+ = −∇P +ν+∇2z+

Cau:on:Specialcasedoesnotrepresentsolarwindgeneralcondi:on!

Page 30: Turbulence: from hydrodynamics to the solar wind plasma

Turbulenceinsolarwindisdynamicallyac:ve,notjustaremnantofturbulenceinthecorona.

Turbulentspectrallowk(1/l)breakpointevolu:on:SolarwindturbulenceisAc:ve

Varia:onofspectralbreakpointv.s.solardistance(Horburyetal.,1996)

-5/3

Magne:cfieldenergyspectrum(MadhaeusandGoldstein,1982)

Page 31: Turbulence: from hydrodynamics to the solar wind plasma

Solarwindspectralbreakathighk(s):Dissipa:on

Goldsteinetal.,2015

Page 32: Turbulence: from hydrodynamics to the solar wind plasma

Dissipa:on

1.   IntermiSentdissipa0onbynon-linearcoherentstructures(MadhaeusandMontgomery,1980):primarilycurrentsheets(andrelatedreconnec:on).Hea:ngisbursty,patchy,andnon-uniform.

2.  ResonantdampingofIncoherentWaves-LandaudampingofKine:cAlfvenWave(e.g.,Chandranetal.,2010,Howesetal.,2011)-Whistler(e.g.,Changetal.,2011)Orboth1and2?AndEachdominatesatdifferentcondi:ons?

Page 33: Turbulence: from hydrodynamics to the solar wind plasma

Dissipa:on:requireskine:cdescrip:ons

•  MHDisnotadequatetoaddressdissipa:on•  Needinves:ga:onsthatcanresolvetheionandelectronscales.1.Simula:ons:-Gyrokine:cCaptureAlfvenicfluctua:ons,howeveritoperatesatlowfrequencylimitandmisshighkphysics(dissipa:onscaleintermidency,whistler,magnetosonicwaves).Italsoaveragesoutcyclotronmo:ons.-HybridCaptureionkine:cs.However,itmisseselectronkine:cs.-Fullyelectromagne0cpar0cle-in-cell(PIC)simula0onsSelf-consistent,solvebothionandelectronkine:cs,computa:onallyexpensive2.Observa:ons:highcadentspacecrazdata

Page 34: Turbulence: from hydrodynamics to the solar wind plasma

PICsimula:on:Spectrumresolvedtoelectronscales

Wuetal.,2013,APJL

Page 35: Turbulence: from hydrodynamics to the solar wind plasma

Fully electromagnetic kinetic Simulation

az Jz

vi n

The eddies interact nonlinearly, merge, stretch, attract, and repel each other, similar to a previous MHD simulation by Matthaeus and Montgomery (1980) and Servidio et al. (2009, PRL)

Moviemadefromasimula:oninWuetal.,2013,APJL

Page 36: Turbulence: from hydrodynamics to the solar wind plasma

Reconnection X-points

az

Hint:intermidency

Simula:onfromWuetal.,2013,APJL

Page 37: Turbulence: from hydrodynamics to the solar wind plasma

Intermidency

Brunoetal.,2001

Page 38: Turbulence: from hydrodynamics to the solar wind plasma

Intermidency

Localvariability:underthesamesolarwindcondi:ons,thereisabroadrangeoflocalcascaderatesthatdeviatesfromGaussian.(Coburnetal.2014)

Page 39: Turbulence: from hydrodynamics to the solar wind plasma

Intermidency:PICsimula:onsandobserva:ons

Kurtosis>3andincreasedwithdecreasedscaleinthedissipa:onrange

PICsimula:ons.PDF(δb(l))deviatesmorefromGaussianasscalel(inthefiguredonatedbyδr)isreduced.

Wuetal.,2013,APJL

Thereisasuddenincreaseatscale~5di.Waves?

Page 40: Turbulence: from hydrodynamics to the solar wind plasma

CoherentstructuresandwaveExcita:on(VPICsimula:on)

Karimabadietal.,2013,PoP

Hea:ngatcoherentstructures(currentsheet)isordersofmagnitudemoreefficientthanwavedamping!

Page 41: Turbulence: from hydrodynamics to the solar wind plasma

Enhanceddissipa:on@enhanced“filaments”(strongercurrentsheet)

Intermidentdissipa:on!

PVIl =|δb(l) |σ 2

δb(l )

Wuetal.,2013,APJL

Page 42: Turbulence: from hydrodynamics to the solar wind plasma

vonKarmanenergydecayinMHDPolitanoandPouquet,1998,PREandWanetal.,2012,JFM

WriteElsasserenergiesZ±2=<|z±|2>=<|u±b|2>,hereZ±istheturbulentamplitude.DeriveandandEnergycontainingeddies(Z+,Z-,L+,L-)controlsdecay(dissipa:on)ε=d(Z+2+Z-2)/dt,independentofviscosityandresis:vity(detailsofdissipa:onmechanism)!

dZ+2

dt= −α+

Z+2Z−

L+

dZ−2

dt= −α−

Z−2Z+

L−

dL+

dt= β+Z−

dL−

dt= β−Z+

MHDequivalentof3rdorderlaw

Page 43: Turbulence: from hydrodynamics to the solar wind plasma

vonKarmansimilaritydecayinfullyeletromagne:cpar:cle-in-cellsimula:ons

PlasmaenergydecayappearstobeconsistentwithMHDextensionofvonKarmansimilaritydecay,independentofmicrophysics!

Wuetal.,2013,PRL

Page 44: Turbulence: from hydrodynamics to the solar wind plasma

Remarks

Kinetic scale intermittency not only shares basic properties with its MHD and hydrodynamic counterparts, but also admits interesting differences associated with plasma effects. The coexistence of dissipative coherent structure and incoherent plasma waves makes the study of turbulence in a plasma more challenging than in ordinary fluid.