Download - Schottky Barrier Heigh oriented process integration 2012

Transcript
Page 1: Schottky Barrier Heigh oriented process integration 2012

Schottky barrier height oriented fabrication process integration

James M.M. Chu, PhDDepartment of Engineering Science

NCKU

Page 2: Schottky Barrier Heigh oriented process integration 2012

Three transportation mechanisms for electrical carriers in MS interface

Page 3: Schottky Barrier Heigh oriented process integration 2012

Types of electrical carrier transportation behaviors vs. dopant

Page 4: Schottky Barrier Heigh oriented process integration 2012

Contact resistivity vs. Schottky barrier height along dopant density

Page 5: Schottky Barrier Heigh oriented process integration 2012

Metal Silicide

N-Type Semiconductor

Metal Silicide

P-Type Semiconductor

N-type semiconductor ΦM > ΦS P-type semiconductor ΦM < ΦS

ΦBnelectron

Bn: SBH for n-MOS

Bp: SBH for p-MOS

EC

EF

EVhole

EC : Si conduction band

EF : Effective Si SBH

Ev : Si valence band

ΦBp

(a) (b)

Figure 2.4 Schottky barrier heights vs. carrier transport (a) nMOS, (b) pMOS [67]

Page 6: Schottky Barrier Heigh oriented process integration 2012

Silicide

Source / Drain

electron

Silicide Si S/DInterface

hole

RCSD

WF Bn

RspreadRs

Bp

WF

(a) (b)

Figure 2.5 (a) Metal silicide as MS contact (b) resistive path of MS contact

Page 7: Schottky Barrier Heigh oriented process integration 2012

Table 2.1 Characteristic of C54-TsSi2, CoSi2 and NiSi for CMOS application [50]

C54-TiSi2 CoSi2 NiSi

Formation Temperature (℃) 600-700 600-700 400-600

Thin film resistivity (μΩ-cm) 13-20 14-20 14-20

Schottky barrier height (n-Si, eV) 0.6 0.64 0.67

Dominant moving species Si Co Ni

Si consumption ratio 2.27 3.64 1.83

Silicide thickness ratio 2.51 3.52 2.34

Melting point (℃) 1500 1326 992

Eutectic point (℃) 1330 1204 964

Thermal stability temperature (℃) < 950 900 700

Epitaxy on Silicon No Yes No

Reduction of SiO2 Yes No No

Page 8: Schottky Barrier Heigh oriented process integration 2012

Phase Thin film resistivity(μΩ-cm)

Melting ortransformation/melting (℃)

Ni 7~10 1455

Ni3Si 80~90 1035/1170

Ni31Si12 90~150 1242

Ni2Si 24~30 1255/1306

Ni3Si2 60~70 830/845

NiSi 10.5~18 992

NiSi2 34~50 981/993

Si Dopant Dependent 1414

Electrical and thermal characters of nickel silicide on different phases

(NixSiy)

Page 9: Schottky Barrier Heigh oriented process integration 2012

Phase Thin film resistivity(μΩ-cm)

Melting ortransformation/melting (℃)

IrSi 500 1707

Ir3Si5 4000 1402

Pt2Si 14-16 1100PtSi 28-35 1229IrSi3 350-580 1260

DySi2-x 250-380 1550

ErSi2-x 30 1620

YbSi2-x 34 1425

Electrical and thermal characters of metal silicide alternatives

Page 10: Schottky Barrier Heigh oriented process integration 2012

Parasitic resistance reductions engineering on NiSi contact silicide

Page 11: Schottky Barrier Heigh oriented process integration 2012

Summary of impurity additive enhanced NiSi thermal stability

Page 12: Schottky Barrier Heigh oriented process integration 2012

PAI for silicide zone definition

Page 13: Schottky Barrier Heigh oriented process integration 2012

Experimental workfunction of metal silicide

Page 14: Schottky Barrier Heigh oriented process integration 2012

Metal additives for silicide work function adjustments

Page 15: Schottky Barrier Heigh oriented process integration 2012

Ideal situation of dopant allocations at silicide/silicon interface

Page 16: Schottky Barrier Heigh oriented process integration 2012

Band edge engineering through dipole layer on (a) nMOS, (b) pMOS

Page 17: Schottky Barrier Heigh oriented process integration 2012

Element ionization energy for Si

Page 18: Schottky Barrier Heigh oriented process integration 2012

Summary of DS effects on silicide-silicon SBH adjustment

Page 19: Schottky Barrier Heigh oriented process integration 2012

Silicide-Si contacts for parasitic resistance reduction

Page 20: Schottky Barrier Heigh oriented process integration 2012

The overlap of options / optimization

Consideration of the impurity material selection

Page 21: Schottky Barrier Heigh oriented process integration 2012

Schematic illustrations of the metal/semiconductor contact

Page 22: Schottky Barrier Heigh oriented process integration 2012

Parasitic resistivity reductions through SBH modulation techniques

Page 23: Schottky Barrier Heigh oriented process integration 2012

Ideal situations of impurity distribution in NiSi-interface-Si

Page 24: Schottky Barrier Heigh oriented process integration 2012

Process technologies for CMOS contact silicide resistivity scaling

Page 25: Schottky Barrier Heigh oriented process integration 2012

Summary

• SBH lowering dominate future scaling of transistor contact resistivity.

• Impurity additive as key for new Ohmic contact engineering.

• Impurity spatial allocation in M-S interface dominate the process design approach.

• Three technology lines for process integration: Wafer substrate, silicide material and interface engineering