Download - Materials Behaviour under Impact

Transcript
Page 1: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 11

High Dynamic Loading of Materials

Part 2

Erhardt Lach

French-German Research Institute of Saint-Louis, ISL

Materials Behaviour under Impact

Page 2: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 22

Presentation Outline

Classic armour steels(Quenched and tempered steels)

High Nitrogen Steel (HNS)Ausforming steels

Bainitic steelγ-TiAl

Ti-alloyMMC

Page 3: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 33

Tailoring of mechanical properties of:

Quenched and tempered steels:

by quenching (hardening) and subsequent tempering

Austenitic steels:

work hardening and annealing

Page 4: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 44

Shielding against low velocity fragmentsHoog K,. Lach E., Maurer R., Rössner H.: Bericht R 134/86

STRAIN

TEN

SILE

STR

ESS

Thickness of the sheet: 3mm

VI = 300 m/s

Under this condition the more ductil steel alloy NAXTRA shows a better performance than the high strength armour steel XH 129

Page 5: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 55

Classical armour steelsquenched and tempered steels

Micro structure after hot rolling

Page 6: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 66

0,00,20,40,60,81,01,21,41,6

1000 1200 1400 1600 1800 2000 2200

Em

σdyn,5%, MPa

300 400 500 600HB30

70 mmquenched and tempered steel

Ballistic Tests on Armour Steel

Page 7: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 7

0

500

1000

1500

2000

2500

0 0,1 0,2 0,3 0,4 0,5 0,6TRUE STRAIN

TRU

E ST

RES

S

C961, 480-530 HB30C963, 370-420 HB30C962, 250-300 HB30

MPa

10 -4 s -1

10 -4 s -1

10 -4 s -1

4500 s -1

4500 s -1

4500 s -1

Dyn. Compression Tests on Armour Steels

Page 8: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 88

Micro cracks along the white bands, enrichment of carbid brittle behaviour

backside of crater

Page 9: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 99

Formation of ASB

ASB and micro cracks

Page 10: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1010

Austenitic steels: Hadfield-Steel

Chem. composition: 13 % Mn und 1.3 % C

metastable austenitic structure

Recommanded for light-weight armour in: MILTECH 5/2007

Initial hardness: 200 HB

After severe deformation: 500 HB

Strongly strain hardening

Page 11: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 11

0,4

0,6

0,8

1,0

1,2

250 300 350 400 450 500 550 600

Vickershardness HV30

N-c

onte

nt

% %-N

cold workedsolution-annealed

agedworked at 400°C

shock wave hardening

Tailoring of Nitrogen Alloyed Steel

shock wave hardening

cold working:

rolling, forging

heat treatment

Page 12: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1212

Comparison of HNS and Armour Steel

Page 13: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1313

0

500

1000

1500

2000

2500

3000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

TRUE STRAIN

TRU

E ST

RES

S

solution annealed 280HV30cold worked 380HV30cold rolled 472HV30strain ageing 510HV30

MPa

10 -4 s -12400 s -110 -4 s -1

10 -4 s -1

2000 s -1

4300 s -1

3000 s -1

Compression Test on HNSP900 (0.6 % N)

Page 14: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1414

0,0

0,4

0,8

1,2

1,6

2,0

2,4

0 200 400 600 800 1000Vickershardness HV30

Fm

a rmour steelcold working steel

P900: cold work hardened

P900 work hardened at 400 ° C

2 3

Cold worked and annealed very brittle under impact condition

Page 15: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1515

Ballistic Test without Cover Plate and Backing

Target NATO 60°

1. Plate: armour steel, treated to 530 HV30

2. Platte: HNS P900, forged at 400 °C to 500 HV30

The ballistic performance of both plates is identical

Page 16: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1616

P900 plate after test without cover plate

High density of ASBPlate was impacted in the transient and at the onset of steady state region

Page 17: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1717

The plate was impacted in the steady state region. Melting of material in ASB‘s.

Nr. 2 at 14

P900 plate after test with cover plate

Page 18: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1818

Micromechanism of HNS

no formation of deforming martensitemicro structure is absolutely stable

n =n = 0

Page 19: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 1919

0,00,20,40,60,81,01,21,41,61,82,02,22,4

0 500 1000 1500 2000 2500 3000 3500Dyn. Compression Strength(10%)

Fm

MPa

Armor steelColdworking steelP900

forged at 400 °C

coldrolled

Fm vers. dyn. Compression Strength

Nr. 2 at 14

Nr. 3 at 14

Page 20: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 20

4 mm 3 mm 4 mm

2 mm 3 mm 1 mm 3 mm 2 mm

Layered Armour(japanese sword)

Page 21: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 21

Very High Hardness Steels

cold working steels

Hot Isostatic Pressed (HIPped)pressureless sinteredmelt metallurgy

In general are these steels are too brittle

Page 22: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2222

0

500

1000

1500

2000

2500

3000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

TRUE STRAIN

TRU

E ST

RES

S

quasistatic dynamic

MPa

armour steelhardness 630 HV30

Compression tests on Mars 300

Page 23: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2323

Ausforming Steel

ausforming (AFH) and hardening (H)

TIME in s

C

P = perlit noseA = austeniteB = bainiteM = martensiteMs = martensite startC = carbidAc = transition temperature

Tem

pera

ture

in °C

Page 24: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2424

Ausforming steels

C978: 35NCD16

C979: 45NCD16

(french Norm)

dynamicquasistatic

compression test

Page 25: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2525

Comparison of high-strength steels

C979: 45NCD16C977: Mars 300 (0.45 C)C978: 35NCD16

flow stress, MPa

Em

dyn. stress at 10% strain

Page 26: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2626

Formation of ASB in high-strength steels

MARS 300 45NCD16

Page 27: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2727

0

500

1000

1500

2000

2500

0 0,1 0,2 0,3 0,4 0,5 0,6TRUE STRAIN

TRU

E ST

RES

S

MPa armour steel

rail steel(lower bainit)

Bainitic steels (lower bainit)

dyn compression tests

Page 28: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2828

0,00,20,40,60,81,01,21,41,61,82,02,2

200 300 400 500 600 700 800 900Hardness HV30

Fm

armour steel

cold working steel

rail steellower bainit

Bainitic steel

Page 29: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 2929

Lower bainit is brittle

Page 30: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3030

0

500

1000

1500

2000

2500

0,0 0,1 0,2 0,3 0,4 0,5 0,6TRUE STRAIN

TRU

E ST

RES

S

lamellar, quasistaticlamellar, 4000 - 3000 1/sglobular, quasistaticglobular, 4000 - 2500 1/s

MPaTiAl

γ-TiAlCompression test

x 100

lamellar micro

structurex 500

globular micro

structure

Page 31: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3131

0,00,20,40,60,81,01,21,41,61,82,02,2

200 300 400 500 600 700 800 900Vickershardness HV30

Fm

armour steel

cold working steel

γ -TiAl

globularlamellar

γ-TiAl

After the ballistic test

Page 32: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 32

0,00,20,40,60,81,01,21,41,61,82,02,22,4

100 200 300 400 500 600 700 800 900

Vickershardness HV30

Fm

Armour steel

Cold working steel

Ti 6 4

Ti 6 4

low cost Ti 6 4

rolled

forged

Ti alloy Ti 6 4

rolled, lamellar micro structure

slow cooling rate

forged, globular micro structure

recrystallisation

x 100 x 500

Page 33: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3333

Ti 17 alloy (thermomechanical treatment)

specimen 26: ϕ

= 0.7 solution annealing T = 820 °C 4 htempern T = 680 °C 8 h, hardness: 391 HV30

specimen 27: ϕ

= 0.7 solution annealing T = 820 °C 4 h tempern T = 580 °C 8 h, hardness: 463 HV30

specimen 28: ϕ

= 0.9 solution annealing T = 910 °C 1 h tempern T = 560 °C 8 h, hardness: 507 HV30

specimen 29: ϕ

= 0.9 solution annealing T = 910 °C 1 h tempern T = 680 °C 8 h, hardness: 387 HV30

Al Sn Zr Cr Mo O N C H

4.9 2 2.04 4 3.94 0.47 0.004 0.016 0.006

Page 34: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 34

Different treated Ti 17

x50

initial micro structure specimen 26

x200

x1000

specimen 27

x100 x500

specimen 28 specimen 29

Page 35: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3535

0

200

400

600

800

1000

1200

1400

1600

0,00 0,02 0,04 0,06 0,08 0,10 0,12TRUE STRAIN

TRU

E ST

RES

S

specimen 26specimen 29specimen 27specimen 28

MPa

Quasistatic tensile test

Page 36: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3636

0

400

800

1200

1600

2000

2400

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40True Strain

True

Str

ess

26: 391 HV30 27: 463 HV30 28: 507 HV30 29: 387 HV30

MPa

Dyn. Compression Test

Page 37: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3737

0,00,20,40,60,81,01,21,41,61,82,02,22,4

100 200 300 400 500 600 700 800 900

Vickershardness HV30

Fm

2 9

2 6

2 72 8

armour steels

cold working steels

T i 17 fo rgedinitial status

Ballistic Tests

Page 38: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 38

Specimen 28

ASB: width = 4 µm

Initial status

ASB: width = 30 µm

Ti alloy Ti17

Page 39: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 3939

Ti 17 specimen 28

Page 40: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 40

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

0 100 200 300 400 500 600 700 800 900Vickershardness H V30

Fm

Al-Cu5/25% SiCAlSi9M g/20%SiCAlSi7M g0,5/55%SiCAlCu4M g1Ag/55%SiC316L/15%TiB2

armour steel

cold working steelmechanically alloyed

cast

squeeze cast ing

H IP ped

Al-Cu5/25% SiC 316L/15%TiB2

cast AlSi9Mg/20%SiC

Page 41: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 41

0

100

200

300

400

500

600

700

800

900

AlSi7Mg AlCu5Mg

TRU

E ST

RES

S

20% SiC

55% SiC 25% SiC

MPa

Page 42: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 42

AlSi7Mg reinforced by 55 - 60 % SiC of size:

F100

106 – 150 µm

F500

5 – 25 µm

F1200

1 – 5 µm

Page 43: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 43

0

200

400

600

800

0 0,05 0,1 0,15 0,2 0,25TRUE STRAIN

TRU

E ST

RES

S

F100F500F1200

MPa

Matrix: AlSi7Mg

SiCP:

Dynamic Compression Tests

Page 44: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 44

1,0

1,2

1,4

1,6

1,8

2,0

0 200 400 600 800 1000 1200 1400Particle Size F

EmAlSi7Mg / SiC

F100ρ= 3.0 g/cm3

F500ρ = 3.0 g/cm 3

F1200ρ = 2.7 g/cm 3

Ballistic Tests

Page 45: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 45

AlSi7Mg reinforced by SiC- particles of size F1200

Gaspressure infiltration

Page 46: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 4646

Submicro Ceramic

Al2 O3 , grain size: 0.6 µm - 9.82 µm

grain-Ø: 0.6 µm grain-Ø: 0.91 µm

grain-Ø: 3.76 µm grain-Ø: 9.82 µm

Page 47: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 4747

Ballistic Test and Materials Properties

grain-Ø yaw

a 0,6 0°

b 3,76 0°

c 9,82 1,8°

d 0,91 0,2°

grain-Øhardness strength

4-point bending test

µm HV10 MPa

a 0,6 1977 ± 32 557 ± 35

b 3,76 1725 ± 22 470 ± 31

c 9,82 1543 ± 46 350 ± 16

d 0,91 1908 ± 15 345 ± 30

Al2 O3

Page 48: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 4848

yaw 1,8 °

Ballistic Tests

hardness / strength

Page 49: Materials Behaviour under Impact

Institute of Shock Physics

Imperial CollegeLondon 4949

Ballistic Tests