X-ray micro-diffraction and its applications in material ... 2005 pdf/x-primer/dooryhee... · X-ray...

65
ICXOM 2005, Frascati X-ray micro-diffraction and its applications in material (archaeological) science Eric Dooryhée, CNRS Grenoble

Transcript of X-ray micro-diffraction and its applications in material ... 2005 pdf/x-primer/dooryhee... · X-ray...

ICXOM 2005, Frascati

X-ray micro-diffraction and its applications in material (archaeological) science

Eric Dooryhée, CNRS Grenoble

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

ICXOM 2005, Frascati

Detector

crystal

X-ray diffraction by a SINGLE CRYSTAL

1st diffraction diagramLauë (1912).

white X-ray beam(multi λ)

Lauë diffraction

ICXOM 2005, Frascati

a « mis-aligned » SINGLE CRYSTAL

2D detector

crystal

monochromatic X-ray beam (single λ)

ICXOM 2005, Frascati

a SINGLE CRYSTAL oriented in Bragg condition

2D detector

crystal

monochromatic X-ray beam (single λ)

Bragg law: 2 d sin(θ) = λcrystal orientation θ, diffraction angle 2θX-ray wavelength λ, crystal symmetry (d)

diffracted intensity number, type and positions of the atoms (motif)

diffracted spot size crystal size, defects, strain (microstructure)

deviation (diffraction) angle = 2θ

ICXOM 2005, Frascati

rotating SINGLE CRYSTAL

2D detector

crystal

monochromatic X-ray beam (single λ)

reflection positions symmetry + crystal orientation distribution(grain orientation map)

ICXOM 2005, Frascati

a « spinning » SINGLE CRYSTAL

2D detector

continuously rotating crystal

monochromatic X-ray beam (single λ)

the single crystal experiences all possible orientations

ICXOM 2005, Frascati

POWDER diffraction

2D detector

poly-crystal (powder) = randomlyoriented crystallites

monochromatic X-ray beam (single λ)

Debye Scherrer rings : 2 d sin(θ) = λradius (Bragg angle 2θ) + intensity of each ring structure

ring « breadth » micro-structure (size and strain)intensity distribution along the ring Orientation Density Function

ICXOM 2005, Frascati

Unsufficient number of diffracting particles uncomplete diffraction data

powder diffractionmonochromatic beam

random orientation

poly-crystal

Sphere of confusion effectThe diffracted volume and its position are different for every sample tilt => sample rotation must be avoided

rotate specimen

ICXOM 2005, Frascati

white X-ray micro-beamone crystallite (grain)Lauë diffraction

Main drawback of μ-beam diffraction : highly grain-dependentuse 2D detector, data collection and reduction are difficult

μ-beam spectroscopies (XAS, XRF,…) are becoming « routine »

ICXOM 2005, Frascati

La0.95Sr0.05Ga0.90Mg0.10O3-x

Puerto Rico soil nodule

- Grain orientation mapping

- Crystalline phases distribution

- Strain/Stress mapping

- Local plasticity

- Dislocation densities

Polychromatic (white) beam microdiffraction

Monochromatic beam microdiffraction

Grain size > beam size

Grain size << beam size - Texture analysis

- Crystalline phases distribution

- Mineralogical phase maps

- Stress mapping

ICXOM 2005, Frascati

random orientationpowder diffraction

non-ideal powder:inhomogeneitiestexture, high orientationmixture of phasesdifferent grain sizesdifferent X-ray absorption powerpresence of impurities, substrate

geology, environment, astrophysics, archaeology…

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

the possibility for μ-diffraction

ICXOM 2005, Frascati

ICXOM 2005, Frascati

ICXOM 2005, Frascati

ICXOM 2005, Frascati

KB-mirror

refractive lenswaveguide

45x25 μm2

Overview on focusing elementsEllipsoidal-mirror

0.2x0.2 mrad2

0.3x0.3 mrad20.5 μm2KB-IKB-II

20x40 μm2 2.1x0.2 mrad23 m4.5 cm

3.1 m

3x0.1 μm2 1 mrad2 150 μm 45x25 μm2 0.05x0.05 mrad2 14 m

colllimatorFresnel zone plate

5 μm0.3x0.3μm2 4.5 cm

capillary

2 μm 1 mm2x1 mrad2

ICXOM 2005, Frascati

X-ray detection

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

the need for μ-diffraction

ICXOM 2005, Frascati

« Micro »-samples ⇔ dimension ~ 10 μm:- single crystals (proteins, organic molecules, minerals…)- fibers, polymers (kevlar…), bio-polymers (hair, silk…),… - from powders to single grain

« Micro »-processes

Scanning electron microscopyimage of a 12 micron diameter

poly (p-phenyleneterephthalamide) fibre

recorded at the ESRF Micro-imaging lab (I. Snigireva)

4 examples

ICXOM 2005, Frascati

Macromolecular Crystallography (PX)

Diffraction diagram of ribosome

Macromoleculesfrom apparently simple monomericproteins (e.g. haemoglobin), to multimeric complexes (e.g. theribosome) and complete viruses.

--> biological processes as diverse as DNA recombination and repair, metabolism, cell cycle control, transcription, transport, etc,

aim : relating function and structure.

ICXOM 2005, Frascatistructure of a ribosome

Impossible to grow sufficiently large protein crystalsneed high flux beam (synchrotron) and micro-beam diffraction for

solving the structure of 5x5x5μm3 protein crystals

ICXOM 2005, Frascati

Riekel, C., M. Müller and F. Vollrath (1999) Macromolecules 32(13).Riekel, C. and F. Vollrath (2001) Int. J. Biol. Macrom. 29(3).

Extrusion of a single Nephila silk fibre of about 5 micron diameter. In situ micro-diffraction during forced silking from live spiders.

ICXOM 2005, Frascati

High Pressure μ-diffraction

Structure of minerals in extreme (earth) conditions100 GPa = 1,000,000 atm5-6000 K (laser shot heating)

Diamond Anvil Cell

ICXOM 2005, Frascati

Structure of complex hierarchical micro/nano-composite tissues

J. Keckes, I. Burgert, M. Müller, K. Kölln, M. Burghammer (ESRF-ID13)

cellulose fibrils in ligninZ-helix: Micro-Fibril Angle

stress/strain behaviour

wood cell20μm diameter2μm beam2sec acq. time

ICXOM 2005, Frascati

handling/alignment of sampleat the 1/1000th mm scale

ICXOM 2005, Frascati

a = 14.437(3) Åb = 5.666(1) Åc = 12.548(3)Å

Pbc1 (29)

(ESRF-ID13) D. Flot, Pr Takahashi (Osaka, Japon)

Faisceau : 10 µm ∅

ICXOM 2005, Frascati

layout of ID18F - R. Tucoulou et al.

ICXOM 2005, Frascati

Materialsscience Biology

Environment

Physics

Medecine

ChemistryArt & Archaeology

© E. Chalmin

10mm to 100 μm : statistics over large zones, powder

1-10 μm (and below !): X-ray eye microscopic probe

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

the need for micro-beam X-ray diffraction

applications to Cultural Heritage

ICXOM 2005, Frascati

DIFFRACTIONfor examining the materials (chemical/structural content) as records of past events

quantitative (Rietveld refinement) --> phase proportions, recipes

cristallography (unknown or ill-defined structures)

qualitative (phase identification) --> origin, provenance--> phase transformation (ageing, environment)

imaging

micro-structure (diffraction line shape)--> grain size and strain: preparation, processing

texturing (grain orientation distribution)--> manufacturing, « packaging »

trace phases (impurities) --> origin, contamination

ICXOM 2005, Frascati

M. Müller, M.Z. Papiz, D.T. Clarke, M.A. Roberts, B.M. Murphy, M. Burghammer, C. Riekel, E. Pantos and J. Gunneweg

Identification of textiles from the Khirbet Qumran caves

The Dead Sea Scrolls (2nd cent. BC-1st cent. AD) : the 1st proof of the Old Testament ? a controversy…

To relate the chemical/structural information of the material (pottery, clothing) with the archaeological issues :Where/when do the fragments come from (Essenes) ?

μdiffraction on single fibrils tells the difference between cotton, linen (cellulose) and wool. Mixing wool (animal textile) with sacred parchments ? State of preservation.

To identify the colorants in the textiles: mineral/vegetal, organic/inorganic, non-crystalline dyes (provenance, date ?)

Also attached particles : soil contamination, green Cu corrosion

ICXOM 2005, Frascati

M. Müller, M.Z. Papiz, D.T. Clarke, M.A. Roberts, B.M. Murphy, M. Burghammer, C. Riekel, E. Pantos and J. Gunneweg*

Identification of textiles from the Khirbet Qumran cavesSpectrochimica Acta B (2004).

*Hebrew University of Jerusalem

1/4

ICXOM 2005, Frascati

ICXOM 2005, Frascati

ICXOM 2005, Frascati

spatially resolved diffraction

1D line scan, depth scan

localised details, inhomogeneities,

sub-mm phase/composition change,

molecular/mineralogical speciation

2/4

ICXOM 2005, Frascati

Retaule del ConestableJaume Huguet, 15th CCapella de Santa Anna, Barcelona

N. Salvadó, Barcelona. J. Synchr. Rad., 9 (2002)

Catalan Gothic Altar pieces

© N. Salvadó et al.

© N. Salvadó et al.

ICXOM 2005, Frascati

Complex chromatic layers: identification failed with conventional techniquespreparation, pigments, bindings and alterations ?

painting techniques in the Gothic times ?

© N. Salvadó et al.Jaume Huguet (1415-1492)Retaule del Constable

ICXOM 2005, Frascati

Cu + vinegar vapours + honey, salt Cu acetates, chlorides and carbonatesPigments mixed with egg + drying oil formation of weddelite by weathering

N. Salvadó et al., J. Sync. Rad. 9 (2002) 215.

beam footprint: ca 100 μmSRS-9.6

EDCBA

© N. Salvadó et al.

Ca oxalate (weddelite)________________

green + yellow SnPb2O4________________Pb white (plaster)_______________

gypse

ICXOM 2005, Frascati

spatially resolved diffraction

2D phase mapping

elemental and phase speciation

3/4

ICXOM 2005, Frascati

λ= 1Å, 0.1x1mm2, 40sec/image ( « single bunch » mode) , 4000 images, 10 Gosemi-quantitative Rietveld analysis of every diagram = f(x,y)

D = 400-1000 mm

RX

xy

ID11 ESRF, G. Vaughan

Phase diffraction mapping of a Roman fresco• semi-quantitative phase analysis• preparation/deposition techniques• analysis of a « buried » picture

ICXOM 2005, Frascati

Scanning μ-XRDE. Dooryhée et al. Appl. Phys. A 2005

• identification (non destructive) of pigments • techniques of colour, application, mixing• texture, granulometry, preparation sub-layer• ageing, alteration

a - Cupid’s face b - coarse Ca (plaster) + Qc - Calcite white pigmentd - Fe Haematitee - Fe Goetite (shading)f - Cu egyptian Blueg - Pb(Mg)CO3 (+ PbO)h - fluorescence PIXE mapi - diffraction mapj - reconstruction

ICXOM 2005, Frascati

micro-structure

high resolution diffraction line shape

stress/strain, deformation field,

grain size distribution

defects

4/4

ICXOM 2005, Frascati

Cosmetics 4th cent. BC to 3rd cent. AD

no alteration of the powder in the ceramic container exceptional conservation

White-beige powder in ceramic pyxisfrom Demetrias in Greece, 4th century B.C.

Volos Museum, Greece.

ICXOM 2005, Frascati

- Calcite- Cerussite- Hydrocerussite- impurities

ESRF-ID18F, 28 keV, 5 μm, combined XRD/XRFGreek cosmetics (Volos Museum)

ICXOM 2005, Frascati

XRD 2D image28 keV, 5 μm, ESRF-ID18F

Textured diffraction linesMicrostructure, grain habit

ICXOM 2005, Frascati• XRD lines after treatment by Fit2D

2D μ-XRD (ID18F) on 3 Greek white powdersDerveni : homogeneous fine grainschemical synthesis

SEM observations

Eleusis :20µm-long needlesNo mechanical preparation

Paestum :Polyhedral grains

ICXOM 2005, Frascati

Rietveld refinement of an archaeological lead white(with size anisotropy correction)

Rp=5.75 Rwp=7.34 Rexp=3.48 Chi2=4.45

ICXOM 2005, Frascati

site Pb1 environment

site Pb2 environment

Structure solvinglead white 2PbCO3-Pb(OH)2

Martinetto et al., Acta Cryst. 2002

PbCO3 - PbCO3

Pb(OH)2

ICXOM 2005, Frascati

ICXOM 2005, Frascati

20 µm

1 mm

Powder processing in Ancient Egypt

Galena (PbS)

Cerussite (PbCO3) synthetic Pb chlorides

ICXOM 2005, Frascati

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

E (KeV)

counts

E23106E20514

Pb L

Sb K

ESRF ID22A. Simionovici et al.2 x 5 μm2

μXRD + μXRF + μXANES

Nucl. Inst. & Methods B181 (2001) 744.

Galena (PbS)

ICXOM 2005, Frascati

0

2500

5000

7500

10000

0 5 10 15 20

E (KeV)

counts

galènePhosgénite

Cu

Zn

Fe

Galena PbS Phosgenite Pb2Cl2CO3

ICXOM 2005, Frascati

Ph. Walter, CNRS, Musées de France Le Louvre coll. Laboratoire de Physique Pharmaceutique (Châtenay-Malabry, France )Sciences Chimiques, CNRS, 79 (2003)

XRF mapping (PbLα emission ), ID22, ESRF, μ-beam = 2 x 5µm, E = 17 keV

Diffusion of the lead-based powder across the skin/hair barrier: formation of organo-mineral complexes (fatty acids)

tissue preservation, transformation, toxicity ?

STRATUM CORNEUM

EPIDERMIS

DERMIS

DERMIS

EPIDERMIS

STRATUM CORNEUM

10 µm

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

the need for micro-beam X-ray diffraction

applications to Cultural Heritage- micro-analysis- line/depth scans- 2D phase/element imaging- micro-structure (strain, grain size)- white beam μdiffraction: the Terra Sigillata case

ICXOM 2005, Frascati

beam size: 0.7 x 0.8 μmenergy range: 5 – 14 KeV

N. Tamurabeamline 7.3.3

Advanced Light Source (Berkeley, USA)

Ph. Goudeau, CNRS Poitiers

ICXOM 2005, Frascati

Terra Terra SigillataSigillata

South Gaularound 20 AD

Italyaround 50 BC

PiseArezzo

AppearsAppears in Italy (in Italy (midmid--first century BC)first century BC)important potters’ settlements in South Gaulimportant potters’ settlements in South Gaul

TableTable--ware (fired clay)ware (fired clay)with a with a brightbright--red slipred slip

Dragentof 29 (La Graufesenque)

Ph. SCIAU CEMES - CNRS Toulouse, France Ph. GOUDEAU - CNRS Poitiers, FranceN. TAMURA - Lawrence Berkeley National Lab, USAE. DOORYHEE – CNRS Grenoble, France

ICXOM 2005, Frascati

Terra sigillata1. microstructure (phase distribution, grain size)

understanding the elaboration processes and the origins of these ceramics

2. physico-chemical analyses (Fluo, TEM-EELS)3. μ-XRD (local probe, in plane homogeneity)

La Graufesenque

Ph. Sciau

ICXOM 2005, Frascati

(b)

Χ

(a) (b)

Χ

Χ

(a)(a)

XRD patterns recorded with the X-ray CCD detector

(a) Laue spots with white beam(b) diffraction rings with monochromatic X-ray beam.

The two main diffraction angle axes are 2θ and χ

(a) spots indexed as quartz grain size ~ beam size 1-2μm

(b) presence of different phases and size << beam size 1-2μm

ICXOM 2005, Frascati

H(104)H(110)

H(113)

H(024)

H(116)

H(018)

H(214)H(300)

H(012)

C(104)C(110)

C(113)

C(024)

C(116)

Q(110)

Q(211)

Quartz (Q): isolated spots large grain size (> 1 μm)

Corundum (C): continuous and broad lines very fine grains (nanocrystals)

Hematite (H) micro-crystals 0.1 μm < grain size < 1 μm

Terra Terra SigillataSigillataPh. Sciau, ToulousePh. Goudeau, Poitiers

-0.84 -0 .86 -0.88 -0.90 -0.92 -0 .94 -0.96

2.86

2.84

2.82

2.80

2.78

2.76

2.74

X (m m )

Y (

mm

)

8000

8800

9600

1.04E4

1.12E4

1.2E4

-0.84 -0 .86 -0.88 -0.90 -0.92 -0 .94 -0.96

2.86

2.84

2.82

2.80

2.78

2.76

2.74

X (m m )

Y (

mm

)

3000

6400

9800

1.32E4

1.66E4

2E4

(b)

(d)

-0.84 -0 .86 -0.88 -0.90 -0.92 -0 .94 -0.96

2.86

2.84

2.82

2.80

2.78

2.76

2.74

X (m m )

Y (

mm

)

8000

8800

9600

1.04E4

1.12E4

1.2E4

-0.84 -0 .86 -0.88 -0.90 -0.92 -0 .94 -0.96

2.86

2.84

2.82

2.80

2.78

2.76

2.74

X (m m )

Y (

mm

)

3000

6400

9800

1.32E4

1.66E4

2E4

(b)

(d)

Corundum

Quartz

ICXOM 2005, Frascati

Slip (or S lip (or g los sg los s ) 20 ) 20 μμmm

50 μm

Body (or paste)

S lip (or S lip (or g los sg los s ) 20 ) 20 μμmm

50 μm

Body (or paste)

good quality sigillata(dense and thick slip) mid-first century AC

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000 Hematite Anorthite Corundum

Inte

grat

ed in

tens

ity

Position (mm)Slip Body0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000 Hematite Anorthite Corundum

Inte

grat

ed in

tens

ity

Position (mm)Slip Body

ICXOM 2005, Frascati

0.5 μm

EELS analysis (spot size 20nm) inside and outside the hematite crystal (Fe1.8Ti0.2O3)

500 600 700 800 900E (ev)

L3.2

Fe

K O

L3.2

Ti

μXRD + TEM/EELS the slip consists of a TRANSPARENT glass matrix containing RED hematite, corundum and quartz crystals color and brightness

Few quartz crystals + many small crystals of corundum hardness

body (CaO 10-12%), slip (CaO 1-2% + corundum): different clays

homogeneous production

ICXOM 2005, Frascati

brief introduction to X-ray diffraction

the need for micro-beam X-ray diffraction

applications to Cultural Heritage

white beam μdiffraction

μ−SAXS, μ−GISAXS, …

ICXOM 2005, Frascati

• to examine the mesoscale (0.1-1micron) which was previously disregarded in macroscopic experiments/models

• protein or macromolecular crystallography : automatic micro-diffraction.• failure caused by high (cyclic) stress in microelectronic devices (thermal mismatch, confinement, current flow) stress mapping by μdiffraction• strain distributions in quantum dots and nanotechnology related objects.

• combination of monochromatic/white beam

• combination of X-ray microprobes with either small-angle or wide-angle scattering set-ups (and also fluorescence, XAS, Raman spectroscopy,…)

• to operate laboratory micro-diffractometer « routinely » 20μm• to decrease the lateral resolution down to 50nm at SR

• 3D-mapping of samples with grain structures as small as 300nm

• proper tools to manipulate these micro/nano-objects

ICXOM 2005, Frascati

Acknowledgments

- C2RMF, Paris : Ph. Walter, G. Tsoucaris, C. Deeb, J. Castaing, E. Van Elslande, E. Welcomme, J. Salomon, …

- Laboratoire de cristallographie, CNRS Grenoble : P. Martinetto, M. Anne, J.L. Hodeau, …

- ESRF, Grenoble : J. Susini, A. Fitch, M. Cotte, A. Simionovici, …

and Ph. Sciau (Toulouse), Ph. Goudeau (Poitiers), N. Tamura (Berkeley), T. Ungar (Budapest), …