Virtual Designing using Topology Optimizationcae-forum.de/sites/default/files/FE-Design_Posess.pdf-...

1
Loading Example: F1 application - McLaren Racing Ltd Final validation using field testing Axial load Target: 2.75mm Torsional moment Target: 0.141rad Bending moment Target: 0.034rad M x M y F z Optimized design for minimum weight Determine material distribution External flux Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 20 Final Iteration Initial Optimized Temperature distribution hotspots removed Fluid Topology optimization - Minimize pressure drop - Design variables: porosity Example: Inlet for Heat Exchanger Design domain New Design Cross sectional velocity and heat exchanger efficiency Transfer efficiency + 45% Pressure Drop - 46 % Turbulent stationary flow Virtual Designing using Topology Optimization Iterative design process using rigorously calculated sensitivities: Design domain with boundaries Stiffer and lighter design Advantages: New conceptual designs Faster development cycles Optimization implementation using existing software for the “virtual” equilibrium Support e.g. non-linear modeling: - Contact - Large deformation - Non-linear materials Optimization Optimization New material distribution Preprocessing Preprocessing Equilibrium Equilibrium Results Optimization loop Finite element solver: - Abaqus - Ansys - Msc Nastran - NX Nastran CFD-solver: - Fluent - STAR-CD Material design variables: ρ (thousands!!!) Equilibrium: (high CPU-time) Optimization - Derivatives using adjoint method: (low CPU-time free !!!) {} {} {} {} {} {} ρ λ ρ θ θ λ = - = R d d u u R T Finish {} {} 0 = R .......................................... Structural Topology Optimization - Minimize mass, Maximize stiffness, eigenfrequencies, etc. - Design variables: Young modulus, density, non-linear constitutive material laws e.g. plastic materials. Example: JCB Tractor Lift Mechanism a) c) b) Design Design domain domain Twice stiffness of new design compared to old design for equal mass a) Setting up the model in CAD and exporting model to CAE. b) Automated conceptual topological design process including manufacturing constraints. c) Transferring the optimized structure back into the CAD system using smoothed iso-surfaces. ………………………………………………………………………………………………………………... …………………………………………………Thermal Topology Optimization - Minimize temperature, etc. - Design variables: conduction and convection ...................................................................... …………………………………………………Claus B.W. Pedersen [email protected] FE-DESIGN GmbH http://www.fe-design.com Telephone: +49 40 1814695 - 90 Concept of Topology Optimization Determining material distribution ρ: ρ~1 solid and ρ~0 void 5 th optimization iteration 10 th optimization iteration 15 th optimization iteration 25 th optimization iteration Final – 33rd optimization iteration Topology optimization Verification New CAD design Design domain Enforce 120° symmetry Manufacturing constraints Feasible design Infeasible design Loads Wind turbine hub Example: Renewable energy – a hub

Transcript of Virtual Designing using Topology Optimizationcae-forum.de/sites/default/files/FE-Design_Posess.pdf-...

Page 1: Virtual Designing using Topology Optimizationcae-forum.de/sites/default/files/FE-Design_Posess.pdf- Msc Nastran - NX Nastran CFD-solver: - Fluent - STAR-CD Material design variables:

Loading

Example: F1 application - McLaren Racing LtdFinal validation

using field

testing

Axial loadTarget: 2.75mm

Torsional momentTarget: 0.141rad

Bending momentTarget: 0.034rad

Mx

My

Fz

Optimized

design for

minimum weight

Determine

material

distribution

External

flux

Iteration 1 Iteration 3 Iteration 6

Iteration 10 Iteration 20 Final Iteration

Initial

Optimized

Temperature

distribution

hotspots removed

Fluid Topology optimization- Minimize pressure drop - Design variables: porosity

Example: Inlet for Heat Exchanger

Design

domain

New Design

Cross sectional velocity and heat exchanger efficiency

Transfer

efficiency

+ 45%

Pressure

Drop - 46 %

Turbulent

stationary

flow

Virtual Designing using Topology Optimization

Iterative design

process using

rigorously calculated

sensitivities:

Design domain

with boundaries

Stiffer and lighter design

Advantages:

! New conceptual designs

! Faster development cycles

! Optimization implementation using

existing software for the “virtual”

equilibrium

! Support e.g. non-linear modeling:

- Contact

- Large deformation

- Non-linear materials

OptimizationOptimization

New material

distribution

PreprocessingPreprocessing

EquilibriumEquilibrium

Results

Optimization

loop

Finite element

solver:

- Abaqus

- Ansys

- Msc Nastran

- NX Nastran

CFD-solver:

- Fluent

- STAR-CD

Material design variables: ρ (thousands!!!)

Equilibrium: (high CPU-time)

Optimization - Derivatives using adjoint method:

(low CPU-time → free !!!)

{ }{ }

{ }{ }

{ } { }ρ

λρ

θθλ

∂=!

∂−=

∂ R

d

d

uu

R T

Finish

{ } { }0=R

..........................................

Structural Topology Optimization

- Minimize mass, Maximize stiffness, eigenfrequencies, etc.

- Design variables: Young modulus, density, non-linear constitutive material

laws e.g. plastic materials.

Example: JCB Tractor Lift Mechanism

a)

c)

!!

!!b)

!!

DesignDesign

domaindomain

Twice stiffness of new

design compared to old

design for equal mass

a) Setting up the model in CAD and exporting model to CAE.

b) Automated conceptual topological design process including manufacturing constraints.

c) Transferring the optimized structure back into the CAD system using smoothed iso-surfaces.

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

...

……………………………………………………Thermal Topology Optimization- Minimize temperature, etc. - Design variables: conduction and convection

......................................................................

……………………………………………………Claus B.W. Pedersen

[email protected]

FE-DESIGN GmbH

http://www.fe-design.com

Telephone: +49 40 1814695 - 90

Concept of Topology Optimization

Determining material distribution ρ:

ρ~1 solid and ρ~0 void

5th optimization

iteration

10th optimization

iteration

15th optimization

iteration

25th optimization

iteration

Final – 33rd

optimization iteration

Topology

optimization

Verification

New CAD design

Design domain

Enforce 120° symmetry

Manufacturing constraints

Feasible

design

Infeasible

design

Loads

Wind turbine hub

Example: Renewable energy – a hub