Valorization of olive oil mill wastewater for the ...

16
1 Valorization of olive oil mill wastewater for the production of β-glucans from selected Basidiomycetes strains A. Zerva 1 , G. Mousavi 1 , L.-M. Papaspyridi 1 , P. Christakopoulos 2 and E. Topakas 1* 1 Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece 2 Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden *Correspondence to: E. Topakas. Tel: +30-210-7723264; fax: +30-210-7723163; e-mail: [email protected] Abstract Purpose The aim of the present study was to investigate the feasibility of polysaccharides production by selected Basidiomycetes in submerged culture. Olive oil mill wastewater (OOMW) was also tested as a potential substrate for polysaccharides production by mushroom strains, focusing on the simultaneous degradation and valorization of the waste material. Methods The tested strains were grown in two different substrates, and after biomass harvesting, polysaccharides were isolated using two different methods. The extracellular polysaccharides were isolated from the culture broth, with ethanol precipitation. The isolated fractions were partially characterized with FT-IR spectroscopy. Results All three strains performed well in both substrates. Maximum degradation performance of OOMW was achieved by G. lucidum. Extracellular polysaccharides (EPS) production was observed during growth in defined medium only, except from P. ostreatus, where EPS were also isolated from OOMW cultures. In regard to biomass polysaccharides, P. citrinopileatus biomass grown in OOMW was found to be the richer in glucans, with 14.1 % (w/w) total glucan content. After purification of biomass polysaccharides with two methods, the fraction with the highest glucan content was found to be the one from G. lucidum after growth in defined medium cultures, with 49.1% (w/w) total glucans. FT-IR spectra of the isolated samples revealed the bands corresponding to α- and β- glucosidic bonds, but also the existence of protein contamination. Conclusions Purification of biomass polysaccharides with two distinct methods revealed that α-amylase and Sevag treatments failed to remove completely α-glucans and proteins respectively, leading to the

Transcript of Valorization of olive oil mill wastewater for the ...

Page 1: Valorization of olive oil mill wastewater for the ...

1

Valorizationofoliveoilmillwastewaterfortheproductionofβ-glucansfromselectedBasidiomycetesstrains

A.Zerva1,G.Mousavi1,L.-M.Papaspyridi1,P.Christakopoulos2andE.Topakas1*

1BiotechnologyLaboratory,SchoolofChemicalEngineering,NationalTechnicalUniversityofAthens,5IroonPolytechniouStr.,ZografouCampus,Athens15780,Greece2BiochemicalandChemicalProcessEngineering,DivisionofSustainableProcessEngineering,DepartmentofCivil,EnvironmentalandNaturalResourcesEngineering,LuleåUniversityofTechnology,SE-97187Luleå,Sweden

*Correspondenceto:E.Topakas.Tel:+30-210-7723264;fax:+30-210-7723163;e-mail:[email protected]

Abstract

Purpose

TheaimofthepresentstudywastoinvestigatethefeasibilityofpolysaccharidesproductionbyselectedBasidiomycetesinsubmergedculture.Oliveoilmillwastewater(OOMW)wasalsotestedasapotentialsubstrateforpolysaccharidesproductionbymushroomstrains,focusingonthesimultaneousdegradationandvalorizationofthewastematerial.

Methods

Thetestedstrainsweregrownintwodifferentsubstrates,andafterbiomassharvesting,polysaccharideswereisolatedusingtwodifferentmethods.Theextracellularpolysaccharideswereisolatedfromtheculturebroth,withethanolprecipitation.TheisolatedfractionswerepartiallycharacterizedwithFT-IRspectroscopy.

Results

Allthreestrainsperformedwellinbothsubstrates.MaximumdegradationperformanceofOOMWwasachievedbyG.lucidum.Extracellularpolysaccharides(EPS)productionwasobservedduringgrowthindefinedmediumonly,exceptfromP.ostreatus,whereEPSwerealsoisolatedfromOOMWcultures.Inregardtobiomasspolysaccharides,P.citrinopileatusbiomassgrowninOOMWwasfoundtobethericheringlucans,with14.1%(w/w)totalglucancontent.Afterpurificationofbiomasspolysaccharideswithtwomethods,thefractionwiththehighestglucancontentwasfoundtobetheonefromG.lucidumaftergrowthindefinedmediumcultures,with49.1%(w/w)totalglucans.FT-IRspectraoftheisolatedsamplesrevealedthebandscorrespondingtoα-andβ-glucosidicbonds,butalsotheexistenceofproteincontamination.

Conclusions

Purificationofbiomasspolysaccharideswithtwodistinctmethodsrevealedthatα-amylaseandSevagtreatmentsfailedtoremovecompletelyα-glucansandproteinsrespectively,leadingtothe

Page 2: Valorization of olive oil mill wastewater for the ...

2

suggestionthatthesetwostepscouldbeomittedwithoutsignificantimpact.Moreover,theresultsimplythatthevalorizationofOOMWmightbefeasiblewiththeuseofmushroomstrains,leadingtotheproductionofimportantproducts,suchasglucans.

Keywords:β-glucan,oliveoilmillwastevalorization,Basidiomycetessubmergedculture,polysaccharideisolation

1.Introduction

Glucansarepolysaccharidesconsistingsolelyofglucoseunits.Thenumberofdifferentglucosidicbondswithwhichtheglucosemonomerscanbeconnected,togetherwiththeoccurrenceofbranchedchains,resultsinavarietyofdifferentpolysaccharidemoleculeswithdistinctproperties.Amongthem,β-1,3-D-glucansorβ-1,4-D-glucanscanbefoundinthecellwallsofhigherplantsandcerealseeds,whileβ-1,3-D-glucansandβ-1,6-D-glucansareusuallyfoundinthefungalcellwalls[1],togetherwithα-1,3-Dglucans,frequentlyincomplexwithchitinorproteins[2].β-D-glucansareusuallybranchedchains,withvaryingmolecularweight,whileα-D-glucansarelinearpolymers.

Researchinterestinglucansissteadilygrowingthelast20years,duetotheirimportanteffectsinthehumanhealth,includingantitumor,immunostimulating,(activatingphagocytosis)[3],antidiabetic[4],apoptosis-inducing[4],andantioxidant[5]activities.Activityagainstbacteria,virusesandfungihasalsobeenreported[5].Moreover,theyarefoundtoenhancepatientrecoveryfromthetoxiceffectsofchemotherapy,lowerbloodcholesterolconcentration,andparticipateinbloodpressurecontrol[3].

Manyfungalstrainsproducepolysaccharides,eitherasasecretedmetabolite,orasaconstituentoftheircellwall.Amongthem,theBasidiomycetesspeciesbelongingtothegeneraPleurotusandAgaricus,withgreatsignificanceinhumannutrition,andsomeofpharmaceuticalimportance,suchasGanoderma,arethemostpromisingcandidatesforpolysaccharidesproduction,andthusthefocusofmostresearchstudies[4,6,7,8,9,10].Therearealsosomestudiesreportingthedetectionoftheenzymesresponsibleforthesynthesisofpolysaccharides,suchasβ-D-glucansynthases,andtheircorrespondinggenes[5,11].

Apartfromtheirabilitytoproduceglucanswithdietaryvalue,manyBasidiomycetestrainsarealsoveryefficientlignindegraders,duetotheirpotentoxidativeenzymesystem,comprisingmainlyoflaccases(Lac,EC1.10.3.2),manganeseperoxidases(MnP,EC1.11.1.13)andmanganese-independentperoxidases,suchasligninperoxidase(LiP,EC1.11.1.14),togetherwithavarietyofotheraccessoryenzymes.Duetotheproductionofthisbiocatalyticfactory,Basidiomycetesareabletodegradecomplexphenolicsubstratesandusethemasacarbonsourcetosustaintheirgrowth.Takingthistraitintoadvantage,suitableBasidiomycetesstrainscouldbegrowninlignin-containingwastes,andwhiledegradationofphenolsisunderway,thesecretedpolysaccharidescouldbeisolatedfromtheextracellularfluid,andthebiomasscouldbeharvestedfortheisolationofcellwallpolysaccharides.Thisway,acombinedbioremediationandvalorizationofthewastecanbeachieved[12,13].Apromisingphenolicwasteforthispurposeisoliveoilmillwastewater(OOMW),acommoneffluentfromtheoliveoilproductionprocess.OOMWishighlytoxicagainstplants,soilmicroorganismsandmarineorganisms,duetoitshighorganicloadandphenoliccontent.Basidiomycetesareabletogrowusingitscomponentsascarbonandenergysource,seeingthat,

Page 3: Valorization of olive oil mill wastewater for the ...

3

apartfromphenolcompoundsthatcanbeoxidizedbytheirligninolyticenzymesystem,OOMWalsocontainssugars,lipidsandorganicacidsthatpromotefungalgrowth[13,14].

Inthepresentwork,wereporttheproductionandisolationofβ-D-glucansfromthreeendogenousGreekstrains,Pleurotusostreatus,PleurotuscitrinopileatusandGanodermalucidum.Theproductionofbiomasspolysaccharidesandexo-polysaccharideswastestedduringgrowthintwodifferentsubstrates,adefinedsugarmedium,andacomplexwastewatermedium,containingOOMW.Theisolationofbiomasspolysaccharideswastestedwithtwodifferentmethods.TheisolatedfractionswerefurtheranalyzedwithFT-IRspectroscopy.

2.MaterialsandMethods

2.1Oliveoilmillwastewater

OOMWwasobtainedfromanoliveoilmillwithathree-phasedecanterinKalamata(Peloponnese,S.W.Greece),pretreatedandmaintainedat-20oC.ThecompositionandphysicochemicalpropertiesofOMWWwaspreviouslyassessed[15].Priortouse,pHwasadjustedto6with3NNaOH,andtheOOMWwascentrifugedat8000rpm,4oCfor20minandsubsequentlyfilteredthroughWhatmanNo.1,toremoveanysuspendedsolids.

2.2Microorganismsandcultureprocedures

TheP.citrinopileatusLGAM28684,G.lucidumLGAM9720andP.ostreatusLGAM1123strainsusedforthisstudy,wereobtainedfromtheculturecollectionoftheLaboratoryofGeneralandAgriculturalMicrobiology(AgriculturalUniversityofAthens),andwereselectedafterascreeningevaluationincludingnumerouswhite-rotbasidiomycetes[16].ThestrainsweremaintainedinPotatoDextroseAgarplates(PDA-Applichem,Germany)at4oC.Liquidcultureswerepreparedasreportedpreviously[17].Briefly,the100mLliquidmediumcontainedxylose57gL-1,cornsteepliquor37gL-1,K2HPO41gL-1,andMgSO4(H2O)70.2gL-1.Alternatively,forthepreparationofliquidcultures,OMWWwasdilutedatafinalconcentrationof50%(v/v)withtheappropriatebuffersolutiontoafinalvolumeof100mLin250mLErlenmeyerflaskswithcottonstops,supplementedwith30gL-1yeastextract,andautoclavedat121oCfor20min.Batchfermentationswerealsocarriedoutin2.5LBio-Flo310bioreactors(NewBrunswickScientific,US),usingeithertwo-folddilutedOOMWwith0.1MpotassiumphosphatebufferpH6,orthedefinedmediumdescribedpreviously.Agitationspeedwassetto100rpm,andthemediumwassupplementedwith30gL-1yeastextractpriortosterilization.Theinoculationof1.5Lofmediumwascarriedoutwith200mLoffullygrownprecultures,resultingatastartingconcentrationof1.5-2.5gL-1ofdrybiomass.Thefermentationwasmaintainedat26oC,100rpm,unlessotherwisestated.Samplesweretakenatselectedtimeintervals,centrifuged(1520g,10min),andthesupernatantwasusedforanalysis.Attheendofthebioreactorfermentation,biomasswasseparatedfromtheculturemediumbycentrifugationatthesameconditions,freeze-driedandweighed.

2.3DeterminationofOMWWtotalphenoliccontentanddecolorization

Totalphenolscontentwasdetermined,asdescribedbyWaterhouse[18].Phenolsconcentrationwasexpressedinppmofgallicacidequivalents,usingtheappropriatecalibrationcurve.OMWW

Page 4: Valorization of olive oil mill wastewater for the ...

4

decolorizationwasestimatedspectrophotometricallybymeasuringtheabsorbanceat525nm,aspreviouslydescribed[19].

2.4Assessmentofglucancontentinfungalbiomass

Thecontentintotalglucansandα-glucansweredeterminedinthefreeze-driedmyceliumofalltestedspecies,obtainedfromculturesgrowninOMWW-basedmedia,accordingtotheMushroomandYeastβ-glucanAssayProcedureK-YBGL10/2005(MegazymeInternationalIreland,Bray,Ireland).Thecontentinβ-glucanswascalculatedasthedifferencebetweentotalglucansandα-glucans.

2.5Isolationandpartialpurificationofβ-glucans

Thepurificationofβ-glucansfromthemycelialbiomasswastestedwithtwomethods:ThefirstwasamodifiedmethodofSynytsyaetal.,2009(Fig.1,ProtocolA),andthesecondthemethoddescribedbyWeietal.,2008[32](Fig.2,ProtocolB).

Extracellularpolysaccharides(EPS)wereisolatedasfollows:Theliquidculturesupernatantwasconcentrated10-foldinarotaryevaporator(RotavaporBuchiRE111,Buchi,Switzerland).Intheconcentratedsupernatant,polysaccharideswereprecipitatedwiththeadditionof4volumescoldethanol(96%)andovernightincubationat4oC.Themixturewascentrifugedandtheprecipitatewasfreeze-driedandweighed.

2.6FT-IRspectroscopy

FT-IRspectraofthedriedglucanpreparationswererecordedwithaNicoletMagna-IR560Spectrophotometer(ThermoFisherScientificInc.)inthe4000-400cm-1rangeintheformofKBrpellets.

2.7Statisticalanalyses

DataanalysiswasperformedwiththeuseofSigmaPlotsoftware(SystatSoftware,Inc.,SanJose,CA,USA).Errorbarsrepresentthestandarderrorofthemeanvalue.

3.Results

3.1Fungalgrowthundersubmergedfermentation

Allthreestrainsshowedasatisfactorygrowthinsubmergedcultureinbothmediatested.P.ostreatusyielded4.87mgmL-1biomassafter13daysofgrowthinthe2-Lbioreactorindefinedmedium,and8.38mgmL-1biomassafter13daysunderthesameconditionsinOOMW-basedmedium.Inthelattercase,totalphenolicsreductionreached43.6%,andmediumdecolorization11.1%.BiomassproductionforG.lucidumreached89.5mgmL-1indefinedmedium,butonly4.2mgmL-1inOOMW-basedmedium,after6daysofgrowth.ForOOMW-growncultures,takingintoaccountthelowbiomassproduced,thereductionoftotalphenolicsreachedonly19.4%,butdecolorizationofthemediumwas47.56%attheendoftheculture.

Page 5: Valorization of olive oil mill wastewater for the ...

5

3.2Isolationofextracellularpolysaccharides

ForP.ostreatuscultures,theEPSproductionreached15.9mgmL-1inthedefinedmediumand18.8mgmL-1intheOOMW-basedcultures.ThecrudeEPScorrespondingtothecultureswiththedefinedmediumwasfoundtocontain4.57%totalglucans,consistedof0.27%α-glucansand4.3%β-glucans.LoweryieldwasobtainedintheEPSfractioncorrespondingtotheculturesgrownonOOMWmedium,containing1.91%totalglucansconsistedof0.46%α-glucansand1.45%β-glucans.

InthecaseofG.lucidum,EPSwereonlyproducedatanidentifiablequantityinthecaseofdefinedmediumcultures.Inthiscase,EPSconcentrationwasestimatedonlyat2.53mgmL-1.Nonetheless,EPSexctractedwerefoundtobehighlyrichintotalglucans,reachingthepercentageof37.9%,withonly0.34%accountingforα-glucansand37.6%forβ-glucans.Theseresultsareinaccordancewithpreviousstudies,makingG.lucidumapromisingcandidateforlarge-scaleproductionofvaluableβ-glucans.

ForP.citrinopileatuscultures,EPSsamplescontained6.6%oftotalglucans,ofwhich0.46%wereα-glucansand6.17%wereβ-glucansduringgrowthindefinedmedium,withafinalconcentrationof1.2mgmL-1.However,EPSwerenotdetectedinculturesgrowninOOMWmedium.Forallthreestrains,itseemsthatthemajorityoftheexo-polysaccharidesisolatedaccountsforβ-glucans.

3.3Isolationofmycelialbiomass-derivedglucans

P.ostreatuscrudebiomasssampleswereanalyzedfortotalglucancontentinbothfermentationusingdefinedmediumorOOMWasgrowthsubstrate(Table1).Inthedefined-mediumcultures,totalglucancontentwasfoundat8.68%(w/w),with3.36%(w/w)accountingforα-glucansand5.32%(w/w)accountingforβ-glucans.ConcerningOOMW-basedcultures,thecorrespondingnumberswere7.58%(w/w)fortotalglucans,1.1%(w/w)forα-glucans,and6.48%(w/w)forβ-glucans.IsolationofbiomassderivedpolysaccharidesfromP.ostreatus,wascarriedoutfollowingProtocolA,includingtwoisolationsteps,oneforwatersolublepolysaccharidemoleculesandoneforalkali-solublepolysaccharidemolecules(Table1).ForP.ostreatusgrownindefinedmedium,polysaccharidefractionswereobtainedwherethewatersolublefractioncontained20.45%(w/w)oftotalglucans,ofwhich11.05%(w/w)wereα-glucans,and9.4%(w/w)wereβ-glucans.Additionally,thealkali-solublefractioncontained16.39%(w/w)totalglucans,composedof11.02%(w/w)α-glucansand5.37%(w/w)β-glucans.InthecaseofOOMW-grownbiomass,thealkali-solublepolysaccharidefractionwasabsent,whilethewater-solublefractioncontained34.76%(w/w)totalglucans,with3.02%(w/w)α-glucans,and31.74%(w/w)β-glucans.Fromtheseresultsitseemsthatthetypeofmoleculesproducedmaydependonthegrowthconditions,atleastconcerningtheirphysicochemicalproperties.

TheisolationofpolysaccharidesfromP.citrinopileatusbiomassaftergrowthindefinedmediumwascarriedoutfollowingProtocolB.Theobtainedpolysaccharidefractionwasonly37mg,andthusthedeterminationofitsglucancompositionwasnotpossible.Ontheotherhand,P.citrinopileatusbiomassgrowninOOMWcultureswastreatedwithbothProtocolsAandB,allowingthecomparisonofbothmethodologies.IsolationofpolysaccharidesfollowingProtocolB(Table2),resultedinonlyonepolysaccharidefractionwiththecompositionof31.71%(w/w)totalglucans,15.72%(w/w)α-glucansand16%(w/w)β-glucans.Ontheotherhand,theisolationofpolysaccharidesfollowingPotocolA,yieldedawatersolublefractionwith13.13%(w/w)totalglucans,composedof6.33%(w/w)α-glucansand6.8%(w/w)β-glucans,andanalkali-solublefractionwith23.76%(w/w)totalglucansconsistedof2.21%(w/w)α-glucansand21.55%(w/w)β-glucans.

Page 6: Valorization of olive oil mill wastewater for the ...

6

G.lucidumbiomasswastreatedonlyfollowingProtocolB.Forthedefinedmediumgrownbiomass,theglucanscompositionwasfound6.2%(w/w)fortotalglucans,resultingin0.83%(w/w)α-glucans,and5.39%(w/w)β-glucans,whileafterpurificationtheobtainedfractioncontained49.09%(w/w)totalglucans,composedof0.51%(w/w)α-glucans,and48.58%(w/w)β-glucans(Table3).ForOOMW-grownmycelium,thecrudebiomasscompositionwas5.56%(w/w)totalglucans,0.13%(w/w)α-glucans,and5.43%(w/w)β-glucans.Afterisolation,theobtainedfractioncontained14.96%(w/w)totalglucans,0.64%(w/w)α-glucans,and14.32%(w/w)β-glucans.

3.4FT-IRanalysisofisolatedpolysaccharidefractions

Fortheidentificationoftheisolatedpolysaccharidefractions,FT-IRwasemployed.AllspectrashowninFig.3presentawidepeakaround3300-3400cm-1,correspondingtofree–OHgroupsofalargemolecule,indicatingtheexistenceofhighMWpolysaccharidemolecules[5].Thepeaksin881and893cm-1presentinEPSfromculturesgrowninbothdefinedandOOMWmediumforthesamplesderivedfromthespeciesP.citrinopileatusandG.lucidum,correspondingtoβ-glucosidicbond,andthusindicatingtheexistenceofβ-glucanmolecules[9,20,21].Thepeaksat854,862and845cm-1indicateaccordingly,theexistenceofα-glucanmoleculesinthesamplesofP.ostreatusandP.citrinopileatus[2,20,21].Moreover,thepeaksaround520-550cm-1intheP.ostreatusEPSsample,andsomeoftheothersamples,alsoindicatethepresenceofα-glucansaccordingtoseveralstudies[2,9].Peaksat1127,1153,1152,1158,1150and1143cm-1representthestretchoftheC-O-Cbondofthepyranoseringofsugarmoieties[9,21].Thepeakat1650cm-1foundinallthesamples,correspondstotheC-Nbondoftheaminoacids,andthusindicatesthepresenceofproteincontaminationinthesamples[9].Thepeaksaround2920-2930cm-1correspondto–CH2groupsoflipids,aspreviouslyreported[9].

4.Discussion

Inthepresentwork,allthestudiedBasidiomycetesstrainsgrewwellinbothmedia,yieldingsatisfactoryamountofbiomassinfermentationsindefined,aswellasinOOMWmedia.OOMWsupplementedwithnitrogensourceseemstobeabletosustainmycelialgrowthfromallstrains.However,wastedegradationinthesecaseswasnotashighasreportedpreviouslyforotherBasidiomycetesstrains[13,22,23]indicatingthatfurtheroptimizationstepsarenecessary.However,theresultssuggestthatthesubmergedfermentationmightbemoreefficientintermsofproductivity,duetothefactthatbiomassgrowthwasconsiderablyfastercomparedtosolidstateapproaches,wherecompletefruitbodyformationmighttakeuptotwomonths[24].

P.ostreatusappearstobemoreproductiveintermsofEPScomparedtotheothertwostrains.Inthiscase,aconsiderableamountofEPSwasisolatedinbothtestedmedia,albeitwithalowconcentrationofglucans.TheothertwostrainsseemtoproduceameasurableamountofEPSonlyduringgrowthinthedefinedmedium.EPSobtainedfromG.lucidumculturesinparticular,wereisolatedasagel-likesubstance,aspreviouslyreportedforBasidiomycete’sEPS[8],consistingalmostcompletelyfromβ-glucans.Theyieldsobtainedwerecomparabletothosereportedpreviouslyforotherspecies[25].Unfortunately,EPSwerenotisolatedduringgrowthinOOMW-basedmedia.ThiswasalsothecaseforP.citrinopileatus,however,inthedefinedmediumcultures,theEPSyieldexceededthoseobtainedinthepreviousworkbyWangetal.[10],bythesamespecies,whereonly0.56mgmL-1EPSwereisolated.

Page 7: Valorization of olive oil mill wastewater for the ...

7

ForP.citrinopileatusbiomasspolysaccharides,thepurificationyieldsobtainedwiththetwomethodsweresimilar,andcomparabletorelevantstudies[27,28,29].Inthiscase,thetwomethodstesteddidnotseemtodifferintermsofpolysaccharidesyieldandrecovery,leadingtotheconclusionthatthetime-consumingandcostlystepsofProtocolA,mainlytheincubationwithα-amylaseandtheSevagtreatmentstepsmaybeomittedwithoutsignificantlossinthefinalproduct.

FollowingProtocolA,P.ostreatusbiomassglucanswerefoundmainlyinthewater-solublefraction.Theobtainedpurificationyieldsweresurprisinglyhigh,reaching30%forOOMW-grownmyceliumβ-glucans.Thisisquiteinteresting,takingintoaccountthattheseyieldsareconsiderablyhigherthanothersreportedintheliterature[6,8,30].However,comparableyieldshavebeenalsoobtainedpreviously[26].

Ontheotherhand,fortheisolationofglucansfromG.lucidumbiomassProtocolBprotocolofWeietal.[32]wasfollowed.Theprotocolyieldswereveryhighinthiscase,exceeding40%fortheβ-glucansisolatedfromthemyceliumgrownindefinedmedium,asreportedpreviouslyforotherspecies[26]butquitehigherthanmostrelevantstudies[6,8,30].

FT-IRspectraoftheisolatedfractionsrevealedproteincontamination,despitemultipletreatmentswithSevagreagent,asshowninpreviousstudies[9].Glucansoftenoccurinmushroomsincomplexwithproteinscalledproteoglucansandthuscompleteproteinremovalfromthesamplescanbechallenging[31].Intermsofproteinremoval,ProtocolAdoesnotseemtobesuperiortoProtocolB,despitetheSevagreagenttreatments,indicatingthatthisstepoftheproceduremightbeomittedwithoutsignificantchangesinthefinalproduct.

Moreover,inthecaseoftheglucansisolatedfollowingProtocolA,thetreatmentwithα-amylasefailedtoremovecompletelyα-glucansfromtheisolatedsamples.Theyieldofobtainedα-glucansvariedfrom0.63%inP.citrinopileatusalkali-solublebiomasspolysaccharideto29.29%inP.ostreatuswater-solublebiomasspolysaccharidefraction.ThecorrespondingobtainedyieldsinthecaseofthesamplesisolatedwithProtocolBvariedfrom2.86%to28.13%,indicatingthattheuseofthecommercialα-amylase,atime-consumingandcostlystepoftheprocedure,maybeomittedwithoutsignificantchangeintheα-glucanyields.

5.Conclusions

Overall,theresultsofthepresentworksupportthattheproductionandpurificationoffungalpolysaccharidesmightbefeasibleinsubmergedcultureandinlargescale,providinganalternativemethodforthevalorizationofwastewaterasmediaforfungalgrowth.ThethreeendogenousGreekBasidiomycetesstrainstestedinthisstudyperformedwellduringsubmergedcultureindefinedmedium,butalsoduringgrowthinOOMW.AlthoughproductionandpurificationofBasidiomycete’sglucanscanbeeasierandmorecost-effectiveinsolidstateculturesandinbasidiocarpform,submergedculturecouldofferaninterestingalternativeduetothreemainadvantages:Firstly,themycelialgrowthismuchmorerapid,leadingtohigherproductivity.Secondly,withthismethodtheuseofliquidmediaisrequired,leadingtoagreatervarietyofgrowthmediachoices,includingliquidwastes,suchasOOMW.BasidiomycetesareknowntoeffectivelydegradeOOMW,andafterthenecessaryoptimizationofparameters,thetwoprocessesofOOMWdegradationandpolysaccharidesproductioncouldbecombinedinasingleprocedure,leadingtothevalorizationofatoxicwaste.Finally,withthesubmergedculture,theisolationofextracellularglucanscanalsobeachieved,leadingtofurtherincreaseofthetotalpolysaccharideyieldoftheprocedure.

Page 8: Valorization of olive oil mill wastewater for the ...

8

Acknowledgements

TheauthorswouldliketothankAssociateProf.GeorgeZervakisfromtheAgriculturalUniversityofAthensforkindlyprovidingtheBasidiomycetesstrainsusedinthiswork.

6.References

1.Rop,O.,Mlcek,J.,Jurikova,T.:Beta-glucansinhigherfungiandtheirhealtheffects.Nutr.Rev.67(11),624-631(2009).

2.Synytsya,A.,Novak,M.:Structuralanalysisofglucans.Ann.Transl.Med.2(2),17(2014).

3.Chen,J.,Seviour,R.:Medicinalimportanceoffungalbeta-(1-->3),(1-->6)-glucans.Mycol.Res.111,635-652(2007).

4.Kim,Y.W.,Kim,K.H.,Choi,H.J.,Lee,D.S.:Anti-diabeticactivityofβ-glucansandtheirenzymaticallyhydrolyzedoligosaccharidesfromAgaricusblazei.Biotechnol.Lett.27(7),483-487(2005).

5.Chai,R.,Qiu,C.,Liu,D.,Qi,Y.,Gao,Y.,Shen,J.,Qiu,L.:β-GlucanSynthaseGeneOverexpressionandβ-GlucansOverproductioninPleurotusostreatusUsingPromoterSwapping.PLoSONE8(4),e61693(2013).

6.Carbonero,E.R.,Gracher,A.H.P.,Smiderle,F.R.,Rosado,F.R.,Sassaki,G.L.,Gorin,P.A.J.,IacominiM.:Aβ-glucanfromthefruitbodiesofediblemushroomsPleurotuseryngiiandPleurotusostreatoroseus.Carbohydr.Polym.66(2),252-257(2006).

7.Gao,Y.,Gao,Η.,Chan,Ε.,Tang,W.,Xu,A.,Yang,H.,Huang,M.,Lan,J.,Li,X.,Xu,C.,Zhou,S.,Duan,W.:Antitumoractivityandunderlyingmechanismsofganopoly,therefinedpolysaccaridesextractedfromGanodermalucidum,inmice.Immunol.Investig.34(2005).

8.Santos-Neves,J.C.,Pereira,M.I.,Carbonero,E.R.,Gracher,A.H.P.,Gorin,P.A.J.,Sassaki,G.L.,Iacomini,M.:Agel-formingβ-glucanisolatedfromthefruitbodiesoftheediblemushroomPleurotusflorida.Carbohydr.Res.343(9),1456-1462(2008).

9.Synytsya,A.,Míčková,K.,Synytsya,A.,Jablonský,I.,Spěváček,J.,Erban,V.,Kováříková,E.,Čopíková,J.:GlucansfromfruitbodiesofcultivatedmushroomsPleurotusostreatusandPleurotuseryngii:Structureandpotentialprebioticactivity.Carbohydr.Polym.76(4)548-556(2009).

10.Wang,J.C.,Hu,S.H.,Liang,Z.C.,Yeh,C.J.:Optimizationfortheproductionofwater-solublepolysaccharidefromPleurotuscitrinopileatusinsubmergedcultureanditsantitumoreffect.Appl.Microbiol.Biotechnol.67(6)759-766(2005).

11.Reverberi,M.,DiMario,F.,Tomati,U.:β-Glucansynthaseinductioninmushroomsgrownonolivemillwastewaters.Appl.Microbiol.Biotechnol.66(2),217-225(2004).

12.Crognale,S.,Federici,F.,Petruccioli,M.:beta-GlucanproductionbyBotryosphaeriarhodinaonundilutedolive-millwastewaters.Biotechnol.Lett.25(23),2013-2015(2003).

Page 9: Valorization of olive oil mill wastewater for the ...

9

13.Zerva,A.,Zervakis,G.I.,Christakopoulos,P.,Topakas,E.:Degradationofolivemillwastewaterbytheinducedextracellularligninolyticenzymesoftwowood-rotfungi.J.Environ.Man.(2016).doi:10.1016/j.jenvman.2016.02.042.

14.Agalias,A.,Magiatis,P.,Skaltsounis,A.L.,Mikros,E.,Tsarbopoulos,A.,Gikas,E.,Spanos,I.Manios,T.:Anewprocessforthemanagementofoliveoilmillwastewaterandrecoveryofnaturalantioxidants.J.Agric.Food.Chem.55(7),2671-2676(2007).

15.Ntougias,S.,Gaitis,F.,Katsaris,P.,Skoulika,S.,Iliopoulos,N.,Zervakis,G.I.:Theeffectsofolivesharvestperiodandproductionyearonolivemillwastewaterproperties:EvaluationofPleurotusstrainsasbioindicatorsoftheeffluent'stoxicity.Chemosphere92,399-405(2013)doi:http://dx.doi.org/10.1016/j.chemosphere.2013.01.033

16.Koutrotsios,G.,Zervakis,G.I.:Comparativeexaminationoftheolivemillwastewaterbiodegradationprocessbyvariouswood-rotmacrofungi.BioMedRes.Int.ArticleID482937,14pp.,(2014).doi:10.1155/2014/482937.

17.Papaspyridi,L.M.,Katapodis,P.,Gonou-Zagou,Z.,Kapsanaki-Gotsi,E.,Christakopoulos,P.:Growthandbiomassproductionwithenhancedβ-glucananddietaryfibrecontentsofGanodermaaustraleATHUM4345inabatch-stirredtankbioreactor.Eng.LifeSci.11(1),65-74(2011).

18.Waterhouse,A.L.,2001.DeterminationofTotalPhenolics,in:JohnWiley&Sons,Inc.(Eds.),CurrentProtocolsinFoodAnalyticalChemistry.

19.Aggelis,G.,Ehaliotis,C.,Nerud,F.,Stoychev,I.,Lyberatos,G.,Zervakis,G.:Evaluationofwhite-rotfungifordetoxificationanddecolorizationofeffluentsfromthegreenolivedebitteringprocess.Appl.Microbiol.Biotechnol.59,353-360(2002).

20.Han,M.D.,Han,Y.S.,HyunS.H.,Shin,H.W.:Solubilizationofwater-insolublebeta-glucanisolatedfromGanodermalucidum.J.Environ.Biol.29(2),237-242(2008).

21.Fan,Y.,He,X.,Zhou,S.,Luo,A.,He,T.,Chun,Z.:CompositionanalysisandantioxidantactivityofpolysaccharidefromDendrobiumdenneanum.Int.J.Biol.Macromol.45(2),169-173(2009).

22.Olivieri,G.,Russo,M,Giardina,P.,Marzocchella,A.,Sannia,G.,Salatino,P.:StrategiesfordephenolizationofrawolivemillwastewaterbymeansofPleurotusostreatus.J.Ind.Microbiol.Biotechnol.39(5),719-729(2012).

23.Tsioulpas,A.,Dimou,D.,Iconomou,D.,Aggelis,G.:PhenolicremovalinoliveoilmillwastewaterbystrainsofPleurotusspp.inrespecttotheirphenoloxidase(laccase)activity.Bioresour.Technol.84(3)251-7(2002).

24.Fan,L.,Soccol,C.R.,Pandey,A.:MushroomProduction.In:Pandey,A.,Soccol,C.R.,Larroche,C.(eds.)CurrentDevelopmentsinSolid-stateFermentation,pp.253-274.SpringerNewYork,NewYork(2008).

25.Lee,B.C.,Bae,J.T.,Pyo,H.B.,Choe,T.B.,Kim,S.W.,Hwang,H.J.,Yun,J.W.:BiologicalactivitiesofthepolysaccharidesproducedfromsubmergedcultureoftheedibleBasidiomyceteGrifolafrondosa.EnzymeMicrob.Technol.32(5),574-581(2003).

26.Lee,Y.L.,Huang,G.W.,Liang,Z.C.,Mau,J.L.:AntioxidantpropertiesofthreeextractsfromPleurotuscitrinopileatus.LWT-FoodSci.Technol.40(5),823-833(2007).

Page 10: Valorization of olive oil mill wastewater for the ...

10

27.Liu,X.,Zhou,B.,Lin,R.,Jia,L.,Deng,P.,Fan,K.,Wang,G.,Wang,L.,Zhang,J.:ExtractionandantioxidantactivitiesofintracellularpolysaccharidefromPleurotussp.mycelium.Int.J.Biol.Macromol.47(2),116-119(2010).

28.Smiderle,F.R.,Carbonero,E.R.,Mellinger,C.G.,Sassaki,G.L.,Gorin,P.A.J.,Iacomini,M.:Structuralcharacterizationofapolysaccharideandaβ-glucanisolatedfromtheediblemushroomFlammulinavelutipes.Phytochemistry67(19),2189-2196(2006).

29.Tong,H.,Xia,F.,Feng,K.,Sun,G.,Gao,X.,Sun,L.,Jiang,R.,Tian,D.,Sun,X.:StructuralcharacterizationandinvitroantitumoractivityofanovelpolysaccharideisolatedfromthefruitingbodiesofPleurotusostreatus.Bioresour.Technol.100(4)1682-1686(2009).

30.Amaral,A.E.,Carbonero,E.R.,Simão,R.d.C.G.,Kadowaki,M.K.,Sassaki,G.L.,Osaku,C.A.,Gorin,P.A.J.,Iacomini.,M.:Anunusualwater-solubleβ-glucanfromthebasidiocarpofthefungusGanodermaresinaceum.Carbohydr.Polym.72(3),473-478(2008).

31.Mu,H.,Zhang,A.,Zhang,W.,Cui,G.,Wang,S.,Duan,J.:AntioxidativePropertiesofCrudePolysaccharidesfromInonotusobliquus.Int.J.Mol.Sci.13(7),9194-9206(2012).

32.Wei,S.,Helsper,J.P.F.G.,VanGriensven,L.J.L.D.:PhenolicCompoundsPresentinMedicinalMushroomExtractsGenerateReactiveOxygenSpeciesinHumanCellsInVitro.Int.J.Med.Mushrooms.10(1),1-13(2008).

Page 11: Valorization of olive oil mill wastewater for the ...

11

Table1:GlucancompositionoftheisolatedfractionsfromtheP.ostreatuscultures.TheisolationwasperformedfollowingProtocolA.

Definedmediumcultures

Crudebiomass(%w/w)

Water-solublefraction(%w/w)

Purification(fold)

Yield(%)

Alkali-solublefraction(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans

8.68 20.45 2.36 21.11 16.39 1.89 1.72 4.57

α-glucans 3.36 11.05 3.29 29.29 11.02 3.29 3 0.27

β-glucans 5.32 9.4 1.77 15.77 5.37 1.01 0.9 4.3

OOMWcultures

Totalglucans

7.58 34.76 4.59 28.57 n.d. n.d. n.d. 1.91

α-glucans 1.1 3.02 2.74 16.92 n.d. n.d. n.d. 0.46

β-glucans 6.48 31.74 4.9 30.84 n.d. n.d. n.d. 1.45

Page 12: Valorization of olive oil mill wastewater for the ...

12

Table2:GlucancompositionoftheisolatedfractionsfromtheP.citrinopileatuscultures.TheisolationwasperformedfollowingbothProtocolsAandB.

Definedmediumcultures

Crudebiomass(%w/w)

Water-solublefraction(%w/w)

Purification(fold)

Yield(%)

Alkali-solublefraction(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans

6.49 n.d. n.d. n.d. n.d. n.d. n.d. 6.62

α-glucans

0.56 n.d. n.d. n.d. n.d. n.d. n.d. 0.46

β-glucans

5.93 n.d. n.d. n.d. n.d. n.d. n.d. 6.16

OOMWcultures

Totalglucans

14.061

7.53213.131

31.7120.931

4.2120.61

1.79223.761 1.691 1.51 n.d.

α-glucans

3.121

1.6726.331

15.7222.031

9.4321.31

5.2222.211 0.711 0.631 n.d.

β-glucans

10.9315.862

6.791

15.9920.621

2.7321.381

1.54221.551 1.971 1.771 n.d.

1ResultsfrompurificationprotocolA,2ResultsfrompurificationprotocolB,n.d.notdetected.

Page 13: Valorization of olive oil mill wastewater for the ...

13

Table3:GlucancompositionoftheisolatedfractionsfromtheG.lucidumcultures.TheisolationwasperformedfollowingProtocolB.

Definedmediumcultures

Crudebiomass(%w/w)

Isolatedpolysaccharides(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans 6.2 49.1 7.9 36.3 37.92

α-glucans 0.83 0.51 0.61 2.86 0.34

β-glucans 5.39 48.58 9.01 41.2 37.58

OOMWcultures

Totalglucans 5.56 14.96 2.69 14 n.d.

α-glucans 0.13 0.64 5.04 28.13 n.d.

β-glucans 5.43 14.32 2.64 13.99 n.d.

Page 14: Valorization of olive oil mill wastewater for the ...

14

Figure1

Figure1.Outlineofpolysaccharidespurificationprotocol,asdescribedinSynytsyaetal.,2009(ProtocolA).

Page 15: Valorization of olive oil mill wastewater for the ...

15

Figure2

Figure2.Outlineofpolysaccharidespurificationprotocol,asdescribedinWeietal.,2008(ProtocolB)[32].

Page 16: Valorization of olive oil mill wastewater for the ...

16

Figure3

Figure3.FT-IRspectraofpartiallyisolatedpolysaccharidesamplesderivedfromP.ostreatus(a),G.lucidum(b)andP.citrinopileatus(c).BlackanddarkgreylinesrepresenttheFT-IRspectraofthepolysaccharidesisolatedfrommycelialbiomassandEPS,respectively,isolatedbothfromculturesgrownindefinedmedium.LightgreyanddottedlinesrepresenttheFT-IRspectraofthepolysaccharidesisolatedfrommycelialbiomassandEPS,respectively,isolatedbothfromculturesgrowninOOMWmedium.