Download - Valorization of olive oil mill wastewater for the ...

Transcript
Page 1: Valorization of olive oil mill wastewater for the ...

1

Valorizationofoliveoilmillwastewaterfortheproductionofβ-glucansfromselectedBasidiomycetesstrains

A.Zerva1,G.Mousavi1,L.-M.Papaspyridi1,P.Christakopoulos2andE.Topakas1*

1BiotechnologyLaboratory,SchoolofChemicalEngineering,NationalTechnicalUniversityofAthens,5IroonPolytechniouStr.,ZografouCampus,Athens15780,Greece2BiochemicalandChemicalProcessEngineering,DivisionofSustainableProcessEngineering,DepartmentofCivil,EnvironmentalandNaturalResourcesEngineering,LuleåUniversityofTechnology,SE-97187Luleå,Sweden

*Correspondenceto:E.Topakas.Tel:+30-210-7723264;fax:+30-210-7723163;e-mail:[email protected]

Abstract

Purpose

TheaimofthepresentstudywastoinvestigatethefeasibilityofpolysaccharidesproductionbyselectedBasidiomycetesinsubmergedculture.Oliveoilmillwastewater(OOMW)wasalsotestedasapotentialsubstrateforpolysaccharidesproductionbymushroomstrains,focusingonthesimultaneousdegradationandvalorizationofthewastematerial.

Methods

Thetestedstrainsweregrownintwodifferentsubstrates,andafterbiomassharvesting,polysaccharideswereisolatedusingtwodifferentmethods.Theextracellularpolysaccharideswereisolatedfromtheculturebroth,withethanolprecipitation.TheisolatedfractionswerepartiallycharacterizedwithFT-IRspectroscopy.

Results

Allthreestrainsperformedwellinbothsubstrates.MaximumdegradationperformanceofOOMWwasachievedbyG.lucidum.Extracellularpolysaccharides(EPS)productionwasobservedduringgrowthindefinedmediumonly,exceptfromP.ostreatus,whereEPSwerealsoisolatedfromOOMWcultures.Inregardtobiomasspolysaccharides,P.citrinopileatusbiomassgrowninOOMWwasfoundtobethericheringlucans,with14.1%(w/w)totalglucancontent.Afterpurificationofbiomasspolysaccharideswithtwomethods,thefractionwiththehighestglucancontentwasfoundtobetheonefromG.lucidumaftergrowthindefinedmediumcultures,with49.1%(w/w)totalglucans.FT-IRspectraoftheisolatedsamplesrevealedthebandscorrespondingtoα-andβ-glucosidicbonds,butalsotheexistenceofproteincontamination.

Conclusions

Purificationofbiomasspolysaccharideswithtwodistinctmethodsrevealedthatα-amylaseandSevagtreatmentsfailedtoremovecompletelyα-glucansandproteinsrespectively,leadingtothe

Page 2: Valorization of olive oil mill wastewater for the ...

2

suggestionthatthesetwostepscouldbeomittedwithoutsignificantimpact.Moreover,theresultsimplythatthevalorizationofOOMWmightbefeasiblewiththeuseofmushroomstrains,leadingtotheproductionofimportantproducts,suchasglucans.

Keywords:β-glucan,oliveoilmillwastevalorization,Basidiomycetessubmergedculture,polysaccharideisolation

1.Introduction

Glucansarepolysaccharidesconsistingsolelyofglucoseunits.Thenumberofdifferentglucosidicbondswithwhichtheglucosemonomerscanbeconnected,togetherwiththeoccurrenceofbranchedchains,resultsinavarietyofdifferentpolysaccharidemoleculeswithdistinctproperties.Amongthem,β-1,3-D-glucansorβ-1,4-D-glucanscanbefoundinthecellwallsofhigherplantsandcerealseeds,whileβ-1,3-D-glucansandβ-1,6-D-glucansareusuallyfoundinthefungalcellwalls[1],togetherwithα-1,3-Dglucans,frequentlyincomplexwithchitinorproteins[2].β-D-glucansareusuallybranchedchains,withvaryingmolecularweight,whileα-D-glucansarelinearpolymers.

Researchinterestinglucansissteadilygrowingthelast20years,duetotheirimportanteffectsinthehumanhealth,includingantitumor,immunostimulating,(activatingphagocytosis)[3],antidiabetic[4],apoptosis-inducing[4],andantioxidant[5]activities.Activityagainstbacteria,virusesandfungihasalsobeenreported[5].Moreover,theyarefoundtoenhancepatientrecoveryfromthetoxiceffectsofchemotherapy,lowerbloodcholesterolconcentration,andparticipateinbloodpressurecontrol[3].

Manyfungalstrainsproducepolysaccharides,eitherasasecretedmetabolite,orasaconstituentoftheircellwall.Amongthem,theBasidiomycetesspeciesbelongingtothegeneraPleurotusandAgaricus,withgreatsignificanceinhumannutrition,andsomeofpharmaceuticalimportance,suchasGanoderma,arethemostpromisingcandidatesforpolysaccharidesproduction,andthusthefocusofmostresearchstudies[4,6,7,8,9,10].Therearealsosomestudiesreportingthedetectionoftheenzymesresponsibleforthesynthesisofpolysaccharides,suchasβ-D-glucansynthases,andtheircorrespondinggenes[5,11].

Apartfromtheirabilitytoproduceglucanswithdietaryvalue,manyBasidiomycetestrainsarealsoveryefficientlignindegraders,duetotheirpotentoxidativeenzymesystem,comprisingmainlyoflaccases(Lac,EC1.10.3.2),manganeseperoxidases(MnP,EC1.11.1.13)andmanganese-independentperoxidases,suchasligninperoxidase(LiP,EC1.11.1.14),togetherwithavarietyofotheraccessoryenzymes.Duetotheproductionofthisbiocatalyticfactory,Basidiomycetesareabletodegradecomplexphenolicsubstratesandusethemasacarbonsourcetosustaintheirgrowth.Takingthistraitintoadvantage,suitableBasidiomycetesstrainscouldbegrowninlignin-containingwastes,andwhiledegradationofphenolsisunderway,thesecretedpolysaccharidescouldbeisolatedfromtheextracellularfluid,andthebiomasscouldbeharvestedfortheisolationofcellwallpolysaccharides.Thisway,acombinedbioremediationandvalorizationofthewastecanbeachieved[12,13].Apromisingphenolicwasteforthispurposeisoliveoilmillwastewater(OOMW),acommoneffluentfromtheoliveoilproductionprocess.OOMWishighlytoxicagainstplants,soilmicroorganismsandmarineorganisms,duetoitshighorganicloadandphenoliccontent.Basidiomycetesareabletogrowusingitscomponentsascarbonandenergysource,seeingthat,

Page 3: Valorization of olive oil mill wastewater for the ...

3

apartfromphenolcompoundsthatcanbeoxidizedbytheirligninolyticenzymesystem,OOMWalsocontainssugars,lipidsandorganicacidsthatpromotefungalgrowth[13,14].

Inthepresentwork,wereporttheproductionandisolationofβ-D-glucansfromthreeendogenousGreekstrains,Pleurotusostreatus,PleurotuscitrinopileatusandGanodermalucidum.Theproductionofbiomasspolysaccharidesandexo-polysaccharideswastestedduringgrowthintwodifferentsubstrates,adefinedsugarmedium,andacomplexwastewatermedium,containingOOMW.Theisolationofbiomasspolysaccharideswastestedwithtwodifferentmethods.TheisolatedfractionswerefurtheranalyzedwithFT-IRspectroscopy.

2.MaterialsandMethods

2.1Oliveoilmillwastewater

OOMWwasobtainedfromanoliveoilmillwithathree-phasedecanterinKalamata(Peloponnese,S.W.Greece),pretreatedandmaintainedat-20oC.ThecompositionandphysicochemicalpropertiesofOMWWwaspreviouslyassessed[15].Priortouse,pHwasadjustedto6with3NNaOH,andtheOOMWwascentrifugedat8000rpm,4oCfor20minandsubsequentlyfilteredthroughWhatmanNo.1,toremoveanysuspendedsolids.

2.2Microorganismsandcultureprocedures

TheP.citrinopileatusLGAM28684,G.lucidumLGAM9720andP.ostreatusLGAM1123strainsusedforthisstudy,wereobtainedfromtheculturecollectionoftheLaboratoryofGeneralandAgriculturalMicrobiology(AgriculturalUniversityofAthens),andwereselectedafterascreeningevaluationincludingnumerouswhite-rotbasidiomycetes[16].ThestrainsweremaintainedinPotatoDextroseAgarplates(PDA-Applichem,Germany)at4oC.Liquidcultureswerepreparedasreportedpreviously[17].Briefly,the100mLliquidmediumcontainedxylose57gL-1,cornsteepliquor37gL-1,K2HPO41gL-1,andMgSO4(H2O)70.2gL-1.Alternatively,forthepreparationofliquidcultures,OMWWwasdilutedatafinalconcentrationof50%(v/v)withtheappropriatebuffersolutiontoafinalvolumeof100mLin250mLErlenmeyerflaskswithcottonstops,supplementedwith30gL-1yeastextract,andautoclavedat121oCfor20min.Batchfermentationswerealsocarriedoutin2.5LBio-Flo310bioreactors(NewBrunswickScientific,US),usingeithertwo-folddilutedOOMWwith0.1MpotassiumphosphatebufferpH6,orthedefinedmediumdescribedpreviously.Agitationspeedwassetto100rpm,andthemediumwassupplementedwith30gL-1yeastextractpriortosterilization.Theinoculationof1.5Lofmediumwascarriedoutwith200mLoffullygrownprecultures,resultingatastartingconcentrationof1.5-2.5gL-1ofdrybiomass.Thefermentationwasmaintainedat26oC,100rpm,unlessotherwisestated.Samplesweretakenatselectedtimeintervals,centrifuged(1520g,10min),andthesupernatantwasusedforanalysis.Attheendofthebioreactorfermentation,biomasswasseparatedfromtheculturemediumbycentrifugationatthesameconditions,freeze-driedandweighed.

2.3DeterminationofOMWWtotalphenoliccontentanddecolorization

Totalphenolscontentwasdetermined,asdescribedbyWaterhouse[18].Phenolsconcentrationwasexpressedinppmofgallicacidequivalents,usingtheappropriatecalibrationcurve.OMWW

Page 4: Valorization of olive oil mill wastewater for the ...

4

decolorizationwasestimatedspectrophotometricallybymeasuringtheabsorbanceat525nm,aspreviouslydescribed[19].

2.4Assessmentofglucancontentinfungalbiomass

Thecontentintotalglucansandα-glucansweredeterminedinthefreeze-driedmyceliumofalltestedspecies,obtainedfromculturesgrowninOMWW-basedmedia,accordingtotheMushroomandYeastβ-glucanAssayProcedureK-YBGL10/2005(MegazymeInternationalIreland,Bray,Ireland).Thecontentinβ-glucanswascalculatedasthedifferencebetweentotalglucansandα-glucans.

2.5Isolationandpartialpurificationofβ-glucans

Thepurificationofβ-glucansfromthemycelialbiomasswastestedwithtwomethods:ThefirstwasamodifiedmethodofSynytsyaetal.,2009(Fig.1,ProtocolA),andthesecondthemethoddescribedbyWeietal.,2008[32](Fig.2,ProtocolB).

Extracellularpolysaccharides(EPS)wereisolatedasfollows:Theliquidculturesupernatantwasconcentrated10-foldinarotaryevaporator(RotavaporBuchiRE111,Buchi,Switzerland).Intheconcentratedsupernatant,polysaccharideswereprecipitatedwiththeadditionof4volumescoldethanol(96%)andovernightincubationat4oC.Themixturewascentrifugedandtheprecipitatewasfreeze-driedandweighed.

2.6FT-IRspectroscopy

FT-IRspectraofthedriedglucanpreparationswererecordedwithaNicoletMagna-IR560Spectrophotometer(ThermoFisherScientificInc.)inthe4000-400cm-1rangeintheformofKBrpellets.

2.7Statisticalanalyses

DataanalysiswasperformedwiththeuseofSigmaPlotsoftware(SystatSoftware,Inc.,SanJose,CA,USA).Errorbarsrepresentthestandarderrorofthemeanvalue.

3.Results

3.1Fungalgrowthundersubmergedfermentation

Allthreestrainsshowedasatisfactorygrowthinsubmergedcultureinbothmediatested.P.ostreatusyielded4.87mgmL-1biomassafter13daysofgrowthinthe2-Lbioreactorindefinedmedium,and8.38mgmL-1biomassafter13daysunderthesameconditionsinOOMW-basedmedium.Inthelattercase,totalphenolicsreductionreached43.6%,andmediumdecolorization11.1%.BiomassproductionforG.lucidumreached89.5mgmL-1indefinedmedium,butonly4.2mgmL-1inOOMW-basedmedium,after6daysofgrowth.ForOOMW-growncultures,takingintoaccountthelowbiomassproduced,thereductionoftotalphenolicsreachedonly19.4%,butdecolorizationofthemediumwas47.56%attheendoftheculture.

Page 5: Valorization of olive oil mill wastewater for the ...

5

3.2Isolationofextracellularpolysaccharides

ForP.ostreatuscultures,theEPSproductionreached15.9mgmL-1inthedefinedmediumand18.8mgmL-1intheOOMW-basedcultures.ThecrudeEPScorrespondingtothecultureswiththedefinedmediumwasfoundtocontain4.57%totalglucans,consistedof0.27%α-glucansand4.3%β-glucans.LoweryieldwasobtainedintheEPSfractioncorrespondingtotheculturesgrownonOOMWmedium,containing1.91%totalglucansconsistedof0.46%α-glucansand1.45%β-glucans.

InthecaseofG.lucidum,EPSwereonlyproducedatanidentifiablequantityinthecaseofdefinedmediumcultures.Inthiscase,EPSconcentrationwasestimatedonlyat2.53mgmL-1.Nonetheless,EPSexctractedwerefoundtobehighlyrichintotalglucans,reachingthepercentageof37.9%,withonly0.34%accountingforα-glucansand37.6%forβ-glucans.Theseresultsareinaccordancewithpreviousstudies,makingG.lucidumapromisingcandidateforlarge-scaleproductionofvaluableβ-glucans.

ForP.citrinopileatuscultures,EPSsamplescontained6.6%oftotalglucans,ofwhich0.46%wereα-glucansand6.17%wereβ-glucansduringgrowthindefinedmedium,withafinalconcentrationof1.2mgmL-1.However,EPSwerenotdetectedinculturesgrowninOOMWmedium.Forallthreestrains,itseemsthatthemajorityoftheexo-polysaccharidesisolatedaccountsforβ-glucans.

3.3Isolationofmycelialbiomass-derivedglucans

P.ostreatuscrudebiomasssampleswereanalyzedfortotalglucancontentinbothfermentationusingdefinedmediumorOOMWasgrowthsubstrate(Table1).Inthedefined-mediumcultures,totalglucancontentwasfoundat8.68%(w/w),with3.36%(w/w)accountingforα-glucansand5.32%(w/w)accountingforβ-glucans.ConcerningOOMW-basedcultures,thecorrespondingnumberswere7.58%(w/w)fortotalglucans,1.1%(w/w)forα-glucans,and6.48%(w/w)forβ-glucans.IsolationofbiomassderivedpolysaccharidesfromP.ostreatus,wascarriedoutfollowingProtocolA,includingtwoisolationsteps,oneforwatersolublepolysaccharidemoleculesandoneforalkali-solublepolysaccharidemolecules(Table1).ForP.ostreatusgrownindefinedmedium,polysaccharidefractionswereobtainedwherethewatersolublefractioncontained20.45%(w/w)oftotalglucans,ofwhich11.05%(w/w)wereα-glucans,and9.4%(w/w)wereβ-glucans.Additionally,thealkali-solublefractioncontained16.39%(w/w)totalglucans,composedof11.02%(w/w)α-glucansand5.37%(w/w)β-glucans.InthecaseofOOMW-grownbiomass,thealkali-solublepolysaccharidefractionwasabsent,whilethewater-solublefractioncontained34.76%(w/w)totalglucans,with3.02%(w/w)α-glucans,and31.74%(w/w)β-glucans.Fromtheseresultsitseemsthatthetypeofmoleculesproducedmaydependonthegrowthconditions,atleastconcerningtheirphysicochemicalproperties.

TheisolationofpolysaccharidesfromP.citrinopileatusbiomassaftergrowthindefinedmediumwascarriedoutfollowingProtocolB.Theobtainedpolysaccharidefractionwasonly37mg,andthusthedeterminationofitsglucancompositionwasnotpossible.Ontheotherhand,P.citrinopileatusbiomassgrowninOOMWcultureswastreatedwithbothProtocolsAandB,allowingthecomparisonofbothmethodologies.IsolationofpolysaccharidesfollowingProtocolB(Table2),resultedinonlyonepolysaccharidefractionwiththecompositionof31.71%(w/w)totalglucans,15.72%(w/w)α-glucansand16%(w/w)β-glucans.Ontheotherhand,theisolationofpolysaccharidesfollowingPotocolA,yieldedawatersolublefractionwith13.13%(w/w)totalglucans,composedof6.33%(w/w)α-glucansand6.8%(w/w)β-glucans,andanalkali-solublefractionwith23.76%(w/w)totalglucansconsistedof2.21%(w/w)α-glucansand21.55%(w/w)β-glucans.

Page 6: Valorization of olive oil mill wastewater for the ...

6

G.lucidumbiomasswastreatedonlyfollowingProtocolB.Forthedefinedmediumgrownbiomass,theglucanscompositionwasfound6.2%(w/w)fortotalglucans,resultingin0.83%(w/w)α-glucans,and5.39%(w/w)β-glucans,whileafterpurificationtheobtainedfractioncontained49.09%(w/w)totalglucans,composedof0.51%(w/w)α-glucans,and48.58%(w/w)β-glucans(Table3).ForOOMW-grownmycelium,thecrudebiomasscompositionwas5.56%(w/w)totalglucans,0.13%(w/w)α-glucans,and5.43%(w/w)β-glucans.Afterisolation,theobtainedfractioncontained14.96%(w/w)totalglucans,0.64%(w/w)α-glucans,and14.32%(w/w)β-glucans.

3.4FT-IRanalysisofisolatedpolysaccharidefractions

Fortheidentificationoftheisolatedpolysaccharidefractions,FT-IRwasemployed.AllspectrashowninFig.3presentawidepeakaround3300-3400cm-1,correspondingtofree–OHgroupsofalargemolecule,indicatingtheexistenceofhighMWpolysaccharidemolecules[5].Thepeaksin881and893cm-1presentinEPSfromculturesgrowninbothdefinedandOOMWmediumforthesamplesderivedfromthespeciesP.citrinopileatusandG.lucidum,correspondingtoβ-glucosidicbond,andthusindicatingtheexistenceofβ-glucanmolecules[9,20,21].Thepeaksat854,862and845cm-1indicateaccordingly,theexistenceofα-glucanmoleculesinthesamplesofP.ostreatusandP.citrinopileatus[2,20,21].Moreover,thepeaksaround520-550cm-1intheP.ostreatusEPSsample,andsomeoftheothersamples,alsoindicatethepresenceofα-glucansaccordingtoseveralstudies[2,9].Peaksat1127,1153,1152,1158,1150and1143cm-1representthestretchoftheC-O-Cbondofthepyranoseringofsugarmoieties[9,21].Thepeakat1650cm-1foundinallthesamples,correspondstotheC-Nbondoftheaminoacids,andthusindicatesthepresenceofproteincontaminationinthesamples[9].Thepeaksaround2920-2930cm-1correspondto–CH2groupsoflipids,aspreviouslyreported[9].

4.Discussion

Inthepresentwork,allthestudiedBasidiomycetesstrainsgrewwellinbothmedia,yieldingsatisfactoryamountofbiomassinfermentationsindefined,aswellasinOOMWmedia.OOMWsupplementedwithnitrogensourceseemstobeabletosustainmycelialgrowthfromallstrains.However,wastedegradationinthesecaseswasnotashighasreportedpreviouslyforotherBasidiomycetesstrains[13,22,23]indicatingthatfurtheroptimizationstepsarenecessary.However,theresultssuggestthatthesubmergedfermentationmightbemoreefficientintermsofproductivity,duetothefactthatbiomassgrowthwasconsiderablyfastercomparedtosolidstateapproaches,wherecompletefruitbodyformationmighttakeuptotwomonths[24].

P.ostreatusappearstobemoreproductiveintermsofEPScomparedtotheothertwostrains.Inthiscase,aconsiderableamountofEPSwasisolatedinbothtestedmedia,albeitwithalowconcentrationofglucans.TheothertwostrainsseemtoproduceameasurableamountofEPSonlyduringgrowthinthedefinedmedium.EPSobtainedfromG.lucidumculturesinparticular,wereisolatedasagel-likesubstance,aspreviouslyreportedforBasidiomycete’sEPS[8],consistingalmostcompletelyfromβ-glucans.Theyieldsobtainedwerecomparabletothosereportedpreviouslyforotherspecies[25].Unfortunately,EPSwerenotisolatedduringgrowthinOOMW-basedmedia.ThiswasalsothecaseforP.citrinopileatus,however,inthedefinedmediumcultures,theEPSyieldexceededthoseobtainedinthepreviousworkbyWangetal.[10],bythesamespecies,whereonly0.56mgmL-1EPSwereisolated.

Page 7: Valorization of olive oil mill wastewater for the ...

7

ForP.citrinopileatusbiomasspolysaccharides,thepurificationyieldsobtainedwiththetwomethodsweresimilar,andcomparabletorelevantstudies[27,28,29].Inthiscase,thetwomethodstesteddidnotseemtodifferintermsofpolysaccharidesyieldandrecovery,leadingtotheconclusionthatthetime-consumingandcostlystepsofProtocolA,mainlytheincubationwithα-amylaseandtheSevagtreatmentstepsmaybeomittedwithoutsignificantlossinthefinalproduct.

FollowingProtocolA,P.ostreatusbiomassglucanswerefoundmainlyinthewater-solublefraction.Theobtainedpurificationyieldsweresurprisinglyhigh,reaching30%forOOMW-grownmyceliumβ-glucans.Thisisquiteinteresting,takingintoaccountthattheseyieldsareconsiderablyhigherthanothersreportedintheliterature[6,8,30].However,comparableyieldshavebeenalsoobtainedpreviously[26].

Ontheotherhand,fortheisolationofglucansfromG.lucidumbiomassProtocolBprotocolofWeietal.[32]wasfollowed.Theprotocolyieldswereveryhighinthiscase,exceeding40%fortheβ-glucansisolatedfromthemyceliumgrownindefinedmedium,asreportedpreviouslyforotherspecies[26]butquitehigherthanmostrelevantstudies[6,8,30].

FT-IRspectraoftheisolatedfractionsrevealedproteincontamination,despitemultipletreatmentswithSevagreagent,asshowninpreviousstudies[9].Glucansoftenoccurinmushroomsincomplexwithproteinscalledproteoglucansandthuscompleteproteinremovalfromthesamplescanbechallenging[31].Intermsofproteinremoval,ProtocolAdoesnotseemtobesuperiortoProtocolB,despitetheSevagreagenttreatments,indicatingthatthisstepoftheproceduremightbeomittedwithoutsignificantchangesinthefinalproduct.

Moreover,inthecaseoftheglucansisolatedfollowingProtocolA,thetreatmentwithα-amylasefailedtoremovecompletelyα-glucansfromtheisolatedsamples.Theyieldofobtainedα-glucansvariedfrom0.63%inP.citrinopileatusalkali-solublebiomasspolysaccharideto29.29%inP.ostreatuswater-solublebiomasspolysaccharidefraction.ThecorrespondingobtainedyieldsinthecaseofthesamplesisolatedwithProtocolBvariedfrom2.86%to28.13%,indicatingthattheuseofthecommercialα-amylase,atime-consumingandcostlystepoftheprocedure,maybeomittedwithoutsignificantchangeintheα-glucanyields.

5.Conclusions

Overall,theresultsofthepresentworksupportthattheproductionandpurificationoffungalpolysaccharidesmightbefeasibleinsubmergedcultureandinlargescale,providinganalternativemethodforthevalorizationofwastewaterasmediaforfungalgrowth.ThethreeendogenousGreekBasidiomycetesstrainstestedinthisstudyperformedwellduringsubmergedcultureindefinedmedium,butalsoduringgrowthinOOMW.AlthoughproductionandpurificationofBasidiomycete’sglucanscanbeeasierandmorecost-effectiveinsolidstateculturesandinbasidiocarpform,submergedculturecouldofferaninterestingalternativeduetothreemainadvantages:Firstly,themycelialgrowthismuchmorerapid,leadingtohigherproductivity.Secondly,withthismethodtheuseofliquidmediaisrequired,leadingtoagreatervarietyofgrowthmediachoices,includingliquidwastes,suchasOOMW.BasidiomycetesareknowntoeffectivelydegradeOOMW,andafterthenecessaryoptimizationofparameters,thetwoprocessesofOOMWdegradationandpolysaccharidesproductioncouldbecombinedinasingleprocedure,leadingtothevalorizationofatoxicwaste.Finally,withthesubmergedculture,theisolationofextracellularglucanscanalsobeachieved,leadingtofurtherincreaseofthetotalpolysaccharideyieldoftheprocedure.

Page 8: Valorization of olive oil mill wastewater for the ...

8

Acknowledgements

TheauthorswouldliketothankAssociateProf.GeorgeZervakisfromtheAgriculturalUniversityofAthensforkindlyprovidingtheBasidiomycetesstrainsusedinthiswork.

6.References

1.Rop,O.,Mlcek,J.,Jurikova,T.:Beta-glucansinhigherfungiandtheirhealtheffects.Nutr.Rev.67(11),624-631(2009).

2.Synytsya,A.,Novak,M.:Structuralanalysisofglucans.Ann.Transl.Med.2(2),17(2014).

3.Chen,J.,Seviour,R.:Medicinalimportanceoffungalbeta-(1-->3),(1-->6)-glucans.Mycol.Res.111,635-652(2007).

4.Kim,Y.W.,Kim,K.H.,Choi,H.J.,Lee,D.S.:Anti-diabeticactivityofβ-glucansandtheirenzymaticallyhydrolyzedoligosaccharidesfromAgaricusblazei.Biotechnol.Lett.27(7),483-487(2005).

5.Chai,R.,Qiu,C.,Liu,D.,Qi,Y.,Gao,Y.,Shen,J.,Qiu,L.:β-GlucanSynthaseGeneOverexpressionandβ-GlucansOverproductioninPleurotusostreatusUsingPromoterSwapping.PLoSONE8(4),e61693(2013).

6.Carbonero,E.R.,Gracher,A.H.P.,Smiderle,F.R.,Rosado,F.R.,Sassaki,G.L.,Gorin,P.A.J.,IacominiM.:Aβ-glucanfromthefruitbodiesofediblemushroomsPleurotuseryngiiandPleurotusostreatoroseus.Carbohydr.Polym.66(2),252-257(2006).

7.Gao,Y.,Gao,Η.,Chan,Ε.,Tang,W.,Xu,A.,Yang,H.,Huang,M.,Lan,J.,Li,X.,Xu,C.,Zhou,S.,Duan,W.:Antitumoractivityandunderlyingmechanismsofganopoly,therefinedpolysaccaridesextractedfromGanodermalucidum,inmice.Immunol.Investig.34(2005).

8.Santos-Neves,J.C.,Pereira,M.I.,Carbonero,E.R.,Gracher,A.H.P.,Gorin,P.A.J.,Sassaki,G.L.,Iacomini,M.:Agel-formingβ-glucanisolatedfromthefruitbodiesoftheediblemushroomPleurotusflorida.Carbohydr.Res.343(9),1456-1462(2008).

9.Synytsya,A.,Míčková,K.,Synytsya,A.,Jablonský,I.,Spěváček,J.,Erban,V.,Kováříková,E.,Čopíková,J.:GlucansfromfruitbodiesofcultivatedmushroomsPleurotusostreatusandPleurotuseryngii:Structureandpotentialprebioticactivity.Carbohydr.Polym.76(4)548-556(2009).

10.Wang,J.C.,Hu,S.H.,Liang,Z.C.,Yeh,C.J.:Optimizationfortheproductionofwater-solublepolysaccharidefromPleurotuscitrinopileatusinsubmergedcultureanditsantitumoreffect.Appl.Microbiol.Biotechnol.67(6)759-766(2005).

11.Reverberi,M.,DiMario,F.,Tomati,U.:β-Glucansynthaseinductioninmushroomsgrownonolivemillwastewaters.Appl.Microbiol.Biotechnol.66(2),217-225(2004).

12.Crognale,S.,Federici,F.,Petruccioli,M.:beta-GlucanproductionbyBotryosphaeriarhodinaonundilutedolive-millwastewaters.Biotechnol.Lett.25(23),2013-2015(2003).

Page 9: Valorization of olive oil mill wastewater for the ...

9

13.Zerva,A.,Zervakis,G.I.,Christakopoulos,P.,Topakas,E.:Degradationofolivemillwastewaterbytheinducedextracellularligninolyticenzymesoftwowood-rotfungi.J.Environ.Man.(2016).doi:10.1016/j.jenvman.2016.02.042.

14.Agalias,A.,Magiatis,P.,Skaltsounis,A.L.,Mikros,E.,Tsarbopoulos,A.,Gikas,E.,Spanos,I.Manios,T.:Anewprocessforthemanagementofoliveoilmillwastewaterandrecoveryofnaturalantioxidants.J.Agric.Food.Chem.55(7),2671-2676(2007).

15.Ntougias,S.,Gaitis,F.,Katsaris,P.,Skoulika,S.,Iliopoulos,N.,Zervakis,G.I.:Theeffectsofolivesharvestperiodandproductionyearonolivemillwastewaterproperties:EvaluationofPleurotusstrainsasbioindicatorsoftheeffluent'stoxicity.Chemosphere92,399-405(2013)doi:http://dx.doi.org/10.1016/j.chemosphere.2013.01.033

16.Koutrotsios,G.,Zervakis,G.I.:Comparativeexaminationoftheolivemillwastewaterbiodegradationprocessbyvariouswood-rotmacrofungi.BioMedRes.Int.ArticleID482937,14pp.,(2014).doi:10.1155/2014/482937.

17.Papaspyridi,L.M.,Katapodis,P.,Gonou-Zagou,Z.,Kapsanaki-Gotsi,E.,Christakopoulos,P.:Growthandbiomassproductionwithenhancedβ-glucananddietaryfibrecontentsofGanodermaaustraleATHUM4345inabatch-stirredtankbioreactor.Eng.LifeSci.11(1),65-74(2011).

18.Waterhouse,A.L.,2001.DeterminationofTotalPhenolics,in:JohnWiley&Sons,Inc.(Eds.),CurrentProtocolsinFoodAnalyticalChemistry.

19.Aggelis,G.,Ehaliotis,C.,Nerud,F.,Stoychev,I.,Lyberatos,G.,Zervakis,G.:Evaluationofwhite-rotfungifordetoxificationanddecolorizationofeffluentsfromthegreenolivedebitteringprocess.Appl.Microbiol.Biotechnol.59,353-360(2002).

20.Han,M.D.,Han,Y.S.,HyunS.H.,Shin,H.W.:Solubilizationofwater-insolublebeta-glucanisolatedfromGanodermalucidum.J.Environ.Biol.29(2),237-242(2008).

21.Fan,Y.,He,X.,Zhou,S.,Luo,A.,He,T.,Chun,Z.:CompositionanalysisandantioxidantactivityofpolysaccharidefromDendrobiumdenneanum.Int.J.Biol.Macromol.45(2),169-173(2009).

22.Olivieri,G.,Russo,M,Giardina,P.,Marzocchella,A.,Sannia,G.,Salatino,P.:StrategiesfordephenolizationofrawolivemillwastewaterbymeansofPleurotusostreatus.J.Ind.Microbiol.Biotechnol.39(5),719-729(2012).

23.Tsioulpas,A.,Dimou,D.,Iconomou,D.,Aggelis,G.:PhenolicremovalinoliveoilmillwastewaterbystrainsofPleurotusspp.inrespecttotheirphenoloxidase(laccase)activity.Bioresour.Technol.84(3)251-7(2002).

24.Fan,L.,Soccol,C.R.,Pandey,A.:MushroomProduction.In:Pandey,A.,Soccol,C.R.,Larroche,C.(eds.)CurrentDevelopmentsinSolid-stateFermentation,pp.253-274.SpringerNewYork,NewYork(2008).

25.Lee,B.C.,Bae,J.T.,Pyo,H.B.,Choe,T.B.,Kim,S.W.,Hwang,H.J.,Yun,J.W.:BiologicalactivitiesofthepolysaccharidesproducedfromsubmergedcultureoftheedibleBasidiomyceteGrifolafrondosa.EnzymeMicrob.Technol.32(5),574-581(2003).

26.Lee,Y.L.,Huang,G.W.,Liang,Z.C.,Mau,J.L.:AntioxidantpropertiesofthreeextractsfromPleurotuscitrinopileatus.LWT-FoodSci.Technol.40(5),823-833(2007).

Page 10: Valorization of olive oil mill wastewater for the ...

10

27.Liu,X.,Zhou,B.,Lin,R.,Jia,L.,Deng,P.,Fan,K.,Wang,G.,Wang,L.,Zhang,J.:ExtractionandantioxidantactivitiesofintracellularpolysaccharidefromPleurotussp.mycelium.Int.J.Biol.Macromol.47(2),116-119(2010).

28.Smiderle,F.R.,Carbonero,E.R.,Mellinger,C.G.,Sassaki,G.L.,Gorin,P.A.J.,Iacomini,M.:Structuralcharacterizationofapolysaccharideandaβ-glucanisolatedfromtheediblemushroomFlammulinavelutipes.Phytochemistry67(19),2189-2196(2006).

29.Tong,H.,Xia,F.,Feng,K.,Sun,G.,Gao,X.,Sun,L.,Jiang,R.,Tian,D.,Sun,X.:StructuralcharacterizationandinvitroantitumoractivityofanovelpolysaccharideisolatedfromthefruitingbodiesofPleurotusostreatus.Bioresour.Technol.100(4)1682-1686(2009).

30.Amaral,A.E.,Carbonero,E.R.,Simão,R.d.C.G.,Kadowaki,M.K.,Sassaki,G.L.,Osaku,C.A.,Gorin,P.A.J.,Iacomini.,M.:Anunusualwater-solubleβ-glucanfromthebasidiocarpofthefungusGanodermaresinaceum.Carbohydr.Polym.72(3),473-478(2008).

31.Mu,H.,Zhang,A.,Zhang,W.,Cui,G.,Wang,S.,Duan,J.:AntioxidativePropertiesofCrudePolysaccharidesfromInonotusobliquus.Int.J.Mol.Sci.13(7),9194-9206(2012).

32.Wei,S.,Helsper,J.P.F.G.,VanGriensven,L.J.L.D.:PhenolicCompoundsPresentinMedicinalMushroomExtractsGenerateReactiveOxygenSpeciesinHumanCellsInVitro.Int.J.Med.Mushrooms.10(1),1-13(2008).

Page 11: Valorization of olive oil mill wastewater for the ...

11

Table1:GlucancompositionoftheisolatedfractionsfromtheP.ostreatuscultures.TheisolationwasperformedfollowingProtocolA.

Definedmediumcultures

Crudebiomass(%w/w)

Water-solublefraction(%w/w)

Purification(fold)

Yield(%)

Alkali-solublefraction(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans

8.68 20.45 2.36 21.11 16.39 1.89 1.72 4.57

α-glucans 3.36 11.05 3.29 29.29 11.02 3.29 3 0.27

β-glucans 5.32 9.4 1.77 15.77 5.37 1.01 0.9 4.3

OOMWcultures

Totalglucans

7.58 34.76 4.59 28.57 n.d. n.d. n.d. 1.91

α-glucans 1.1 3.02 2.74 16.92 n.d. n.d. n.d. 0.46

β-glucans 6.48 31.74 4.9 30.84 n.d. n.d. n.d. 1.45

Page 12: Valorization of olive oil mill wastewater for the ...

12

Table2:GlucancompositionoftheisolatedfractionsfromtheP.citrinopileatuscultures.TheisolationwasperformedfollowingbothProtocolsAandB.

Definedmediumcultures

Crudebiomass(%w/w)

Water-solublefraction(%w/w)

Purification(fold)

Yield(%)

Alkali-solublefraction(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans

6.49 n.d. n.d. n.d. n.d. n.d. n.d. 6.62

α-glucans

0.56 n.d. n.d. n.d. n.d. n.d. n.d. 0.46

β-glucans

5.93 n.d. n.d. n.d. n.d. n.d. n.d. 6.16

OOMWcultures

Totalglucans

14.061

7.53213.131

31.7120.931

4.2120.61

1.79223.761 1.691 1.51 n.d.

α-glucans

3.121

1.6726.331

15.7222.031

9.4321.31

5.2222.211 0.711 0.631 n.d.

β-glucans

10.9315.862

6.791

15.9920.621

2.7321.381

1.54221.551 1.971 1.771 n.d.

1ResultsfrompurificationprotocolA,2ResultsfrompurificationprotocolB,n.d.notdetected.

Page 13: Valorization of olive oil mill wastewater for the ...

13

Table3:GlucancompositionoftheisolatedfractionsfromtheG.lucidumcultures.TheisolationwasperformedfollowingProtocolB.

Definedmediumcultures

Crudebiomass(%w/w)

Isolatedpolysaccharides(%w/w)

Purification(fold)

Yield(%)

EPS(%w/w)

Totalglucans 6.2 49.1 7.9 36.3 37.92

α-glucans 0.83 0.51 0.61 2.86 0.34

β-glucans 5.39 48.58 9.01 41.2 37.58

OOMWcultures

Totalglucans 5.56 14.96 2.69 14 n.d.

α-glucans 0.13 0.64 5.04 28.13 n.d.

β-glucans 5.43 14.32 2.64 13.99 n.d.

Page 14: Valorization of olive oil mill wastewater for the ...

14

Figure1

Figure1.Outlineofpolysaccharidespurificationprotocol,asdescribedinSynytsyaetal.,2009(ProtocolA).

Page 15: Valorization of olive oil mill wastewater for the ...

15

Figure2

Figure2.Outlineofpolysaccharidespurificationprotocol,asdescribedinWeietal.,2008(ProtocolB)[32].

Page 16: Valorization of olive oil mill wastewater for the ...

16

Figure3

Figure3.FT-IRspectraofpartiallyisolatedpolysaccharidesamplesderivedfromP.ostreatus(a),G.lucidum(b)andP.citrinopileatus(c).BlackanddarkgreylinesrepresenttheFT-IRspectraofthepolysaccharidesisolatedfrommycelialbiomassandEPS,respectively,isolatedbothfromculturesgrownindefinedmedium.LightgreyanddottedlinesrepresenttheFT-IRspectraofthepolysaccharidesisolatedfrommycelialbiomassandEPS,respectively,isolatedbothfromculturesgrowninOOMWmedium.