Tony Wilson University of Oxford - Lick...

37
Adaptive optics in confocal microscopy Tony Wilson University of Oxford The Confocal microscope The aberration problem Wavefront sensing Wavefront generation Examples

Transcript of Tony Wilson University of Oxford - Lick...

Page 1: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Adaptive optics in confocal microscopy

Tony WilsonUniversity of Oxford

•The Confocal microscope

•The aberration problem

•Wavefront sensing

•Wavefront generation

•Examples

Page 2: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Confocal Microscope

Conv.viewing

Conv.Light

source

Beam scanning

Laser

Detector

Page 3: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Optical Sectioning

0

1

-15 -10 -5 0 5 10 15

Laser

Detector

object

Page 4: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Optical Sectioning Strength

λ = 633 nm

Page 5: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Typical images

Manufacturers include:Zeiss OlympusLeica Nikon…

Prices ~100k monies upwards

Page 6: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Why adaptive optics is needed

• For best performance use high NA lenses (upto 1.4)

• Aberrations introduced by:� Index mismatches at boundaries� Specimen inhomogeneities

• Causes loss of both signal and resolution• Penetration depths typically limited to 20µm

Page 7: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Aberrations• Point spread functions

d

d=0λ d=25λ d=50λ

water

Page 8: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

d=0λ d=25λ d=50λ

raw

CorrectTwo Zernike

CorrectOne Zernike

d=0λ d=25λ d=50λ

Page 9: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

The problem

• Optical sectioning -- aberration problem

• Adaptive optics solution

• Wavefront sensing – modal – optical sectioning

• Wavefront generation

• Examples

Page 10: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

An adaptive optics system

Detector pinhole

SpecimenObjective

Pointsource

Page 11: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

An adaptive optics system

Detector pinhole

SpecimenObjective

Adaptiveelement

Wavefrontsensor

Feedback loop

Pointsource

Page 12: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront control

• Remove system/specimen induced aberrations

• Control – tune – pupil function

Point spread function engineering

h = F{P}

Page 13: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront control

• 4-f optical system

f f f f

•Binary optical element, pixellated (x,y) +1 and -1

•Uniform plane wave input

•a(x) exp jφ(x) output

a(x) exp jφ(x)

Page 14: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront generation

ff f f

u

v

-1 +1

Encode SLM +1 or –1

Fourier transform with lens

Spatially filter desired diffracted order

Fourier transform backEncodingscheme

u + j v

Page 15: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront generator

PBS = polarising beam splitter FLCSLM = ferro-electric liquid crystal spatial light modulator

CCDcamera

Spatial filter

PBS

FLCSLM PBS

Mirror

BS

From laser

• Arbitrary amplitude and phase wavefronts• Reconfigurable at ~2.5kHz (Displaytech FLCSLM)• Inefficient use of light (<5% throughput)

Page 16: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Point spread function engineering

• Uniform pupil function

Pupil x-y x-z

Page 17: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Point spread function engineering

• Simulate spherical aberation

Pupil x-y x-z

Page 18: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront sensing• Conventional methods are not suitable due to out-of-focus

lightNew wavefront sensor incorporating pinhole detectors

Axial selectivity similar to confocal microscope

Direct measurement of Zernike aberration modes

Why Zernike modes?

Convenient mathematical description of aberrations

Correspond to traditional aberrationse.g. spherical, coma, astigmatism

Only lower order correction needed

Page 19: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront Sensor

• Senses amount of Zernike modes present

• Inherent optical sectioning

• How to detect defocus?

How to detect other Zernike modes?

Page 20: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Defocus sensor

Nominal

focal plane

Page 21: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Defocus sensor

Nominal

focal plane

Display differenceSignals from twodetectors Input

defocus

Difference signal

Page 22: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Detector 1

Detector 2

Positive lens

Negative lens

Positive defocus (positive aberration bias)

Negative (negative aberration bias)

Form difference signal

Inputdefocus

Difference signal

Page 23: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront sensing

Diffraction orders +1 and –1 are separate positively and negativelybiased spots

Create binary element: 1) add tilt _ to aberration mode, φ

2) binarise result

Detector pinholesBinary elementBinary element

( ) ( ) ( ) ( ) ...33exp33expexpexp 31

31 +−−+++−−++ τφτφτφτφ jjjj

Page 24: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Spherical aberration sensor

• Z4,0 aberration bias – first order spherical• Strong differential response to Z4,0

• Weak or no differential response to otheraberrations

None +0.3Z4,0 -0.3Z4,0 +0.3Z2,0 +0.3Z6,0+0.3Z2,2 +0.3Z3,3

Page 25: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Cross- talk

Page 26: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Wavefront sensing

• Use binary element to create two biased spots simultaneously

• Use multiplexed binary element to sense many modes simultaneously

Page 27: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Sequential biassing

Detector pinholeBiassing element

•Add +ve and –ve bias sequentially with adaptive element

Page 28: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Aberration correction for 3Doptical memory

Write bit data deep in LiNbO3 crystal by two-photon absorption

• Refractive index of LiNbO3 is 2.3

• Dry lens necessary

• Spherical aberration limits possible writing depth

• Use FLCSLM wavefront generator to pre-aberrate wavefronts

• Bit data written at depth of 1mm into crystal

Page 29: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Our System

CCD

Ferroelectric liquidcrystal spatial lightmodulator,FLCSLM

40x0.7NA

160/0.17

50x0.8NA∞/0

1mm LiNbO3

Ti:Sapphire 780nm

• Aim to record optical memorydata through depth of LiNbO3 by2-photon absorption

Page 30: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Aberrations in 1mm LiNbO3

"Nominal"focus

"Best"focus

Corrected

Page 31: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Scanning in 3-D

• Scan in x,y and z using the FLCSLM• 3.2 Z2,0 between planes = 20 µm in LiNbO3

top bottom

Page 32: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Corrected vs. uncorrected

Nominalfocus

Nominalfocus

Page 33: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

• Static aberration introduced by FLCSLM wavefront generator

• Membrane mirror used as correction element

• Zernike aberration modes measured by sequential MWFS

Sensing and correction with deformable mirror

MembranemirrorFrom laser

Pinhole

Detector

FLCSLMwavefrontgenerator

Page 34: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Sensing and correction with deformable mirror

Before AfterDuring

Page 35: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

• Membrane mirror used as both correction and MWFS element

• Wavefront measurement calculated from frame averages

• Correction of field independent aberrations

Adaptive optics in the confocal microscope

Objective lens

Specimen

Detector

Dichroicbeamsplitter

Membranemirror

From laser λ= 532nm

Confocal pinhole

Page 36: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

(Interim) Conclusions

• Wavefront generation and correction

• Aberration measurement by wavefrontsensing

Demonstrations

• Closed loop operation

• Aberration correction for two-photonwriting of thick optical memory

• Adaptive optics for single photonfluorescence microscopy

Page 37: Tony Wilson University of Oxford - Lick Observatorycfao.ucolick.org/pubs/presentations/aosummer03/Wilson.pdf · Adaptive optics in confocal microscopy Tony Wilson University of Oxford

Further developments

• Fixed element wavefront sensor with pinhole/diodearray

• Measure aberrations introduced by ‘typical’biological specimens.