Time Series Analysis 3. ADL Model Autoregressive...

9
Time Series Analysis 3. ADL Model Autoregressive Distributed Lag Model Autoregressive: p lags of dependent variable Y t distributed lag: q lags of additional regressor X t ADL(p, q ) Y t = β 0 + β 1 Y t-1 + ... + β p Y t-p + δ 1 X t-1 + ... + δ q X t-q + u t β (L)Y t = β 0 + δ (L)X t-1 with lag-polynomials defined by β (L)=1 - β 1 L - ... - β p L p δ (L)= δ 1 + δ 2 L + ... + δ q L q-1 k additional predictors: ADL(p, q 1 , ..., q k ) β (L)Y t = β 0 + δ 1 (L)X 1,t-1 + δ 2 (L)X 2,t-1 + ... + δ k (L)X k,t-1 1

Transcript of Time Series Analysis 3. ADL Model Autoregressive...

Time Series Analysis 3. ADL Model

Autoregressive Distributed Lag Model

Autoregressive: p lags of dependent variable Yt

distributed lag: q lags of additional regressor Xt

⇒ ADL(p, q) Yt = β0 + β1Yt−1 + ... + βpYt−p + δ1Xt−1 + ... + δqXt−q + ut

• β(L)Yt = β0 + δ(L)Xt−1 with lag-polynomials defined by

β(L) = 1− β1L− ...− βpLp

δ(L) = δ1 + δ2L + ... + δqLq−1

• k additional predictors: ADL(p, q1, ..., qk)

β(L)Yt = β0 + δ1(L)X1,t−1 + δ2(L)X2,t−1 + ... + δk(L)Xk,t−1

1

Time Series Analysis 3. ADL Model

Autoregressive Distributed Lag Model

• Model Assumptions

(1) E[ut|Yt−1, Yt−2, ..., X1t−1, X1t−1, ..., Xkt−1, Xkt−2, ...] = 0

(2)(a) (Yt, X1t, ..., Xkt) are (strictly) stationary

(b) (Yt, X1t, ..., Xkt) are ergodic, i.e.

(Yt, X1t, ..., Xkt) and (Yt−j, X1t−j, ..., Xkt−j) become independent forj →∞

(3) Yt and X1t, ..., Xkt have nonzero, finite fourth moments

(4) no perfect multicollinearity

⇒ OLS regression theory applies

2

Time Series Analysis 3. ADL Model

Autoregressive Distributed Lag Model

(1) implies

o Cov(ut, Yt−j) = 0, Cov(ut, Xit−j) = 0 ∀j > 0 and i = 1, ..., k

o Cov(ut, ut−j) = 0 ∀j > 0 : ut’s are not serially correlated

⇒ no further lags of Yt, Xit’s needed

(3) assures that variance estimators are consistent

3

Time Series Analysis 3. ADL Model

Granger Causality (“predictability”)

• Asks whether forecast of Yt can be improved by considering lags of Xt

• Ωt: information set in period t

MSFE (Yt+h|Ωt): MSFE of forecasting Yt+h given Ωt

Xt Granger causes Yt: XtGr→ Yt if

MSFE (Yt+h|Ωt) < MSFE (Yt+h|Ωt/Xs|s ≤ t))for at least one forecast horizon h > 0

4

Time Series Analysis 3. ADL Model

Granger Causality (“predictability”)

• if XtGr9 Yt, then Xt has no predictive content for Yt

• Test: H0 : XtGr9 Yt vs. H1 : Xt

Gr→ Yt

= F -Test on significance of lags of Xt in ADL(p, q) model

Example: H0 : UnemploymenttGr9 ∆Inft

ADL(4, 4) model: F -Test = 10.45 ⇒ p-value < 0.0001

⇒ Reject H0

5

Time Series Analysis 3. ADL Model

Forecast Uncertainty

• Forecast uncertainty: unknown uT+1 + estimation error

• RMSFE usual measure → standard error of forecast

• Example ADL(1, 1): Yt = β0 + β1Yt−1 + δXt−1 + ut

YT+1|T = β0 + β1YT + δ1XT

uT+1|T = YT+1− YT+1|T = uT+1 + [(β0− β0) + (β1− β1)YT + (δ1− δ1)XT ]

MSFE = E[(YT+1 − YT+1|T )2]

= σ2u + Var [(β0 − β0) + (β1 − β1)YT + (δ1 − δ1)XT ]︸ ︷︷ ︸

γ

because uT+1 is uncorrelated with second term

6

Time Series Analysis 3. ADL Model

Forecast Uncertainty

• How to estimate Var(γ)? Problem: dependence of β0, β1 and δ1 on YT , XT

o Pseudo out-of-sample forecasts

o Estimate conditional variance Var(γ|YT , XT ) (as for models withnonstochastic regressors)

o Estimate asymptotic variance limT→∞

T · Var(γ)

7

Time Series Analysis 3. ADL Model

Standard Error of Forecast: ADL(1,1)

Var(γ|YT , XT ) = σ2uzT (Z ′Z)−1z′T with zT = (1 YT XT ) and

Z =

1 Y1 X1... ... ...1 YT XT

MSFE = σ2u (1 + zT (Z ′Z)−1z′T )︸ ︷︷ ︸

Inflation factor

RMSFE = σu

√(1 + zT (Z ′Z)−1z′T ) is standard error of forecast

RMSFE = σu

√(1 + zT (Z ′Z)−1z′T ) is estimated standard error of forecast

8

Time Series Analysis 3. ADL Model

Forecast Interval

• ”Confidence interval for forecast”

• If ut is normally distributed, then (asymptotical) 95% forecast interval forYT+1|T is given by

YT+1|T ± 1.96 · RMSFE

• If infinitely many FI’s are computed, then 95% of the FI estimates containthe true value YT+1

9