The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter...

35
The Sensitivity Analysis and Parameter Estimation of Mathematical Models Described by Differential Equations Hossein ZivariPiran [email protected] Department of Computer Science University of Toronto (part of my PhD thesis under the supervision of professor Wayne Enright ) SONAD 2008 – p.1/21

Transcript of The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter...

Page 1: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

The Sensitivity Analysis and Parameter Estimation ofMathematical Models Described by Differential Equations

Hossein ZivariPiran

[email protected]

Department of Computer Science

University of Toronto

(part of my PhD thesis under the supervision of professor Wayne Enright)

SONAD 2008 – p.1/21

Page 2: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Outline

� Modeling with Differential Equations (IVPs, DDEs)

� Sensitivity Analysis of Models Described by DEs

� Parameter Estimation of Models Described by DEs

SONAD 2008 – p.2/21

Page 3: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - Formulation

� An Initial Value Problem (IVP) for Ordinary Differential Equations (ODEs)

y′(t) = f(t, y(t))

y(t0) = y0

� Retarded Delay Differential Equations (RDDEs)

y′(t) = f(t, y(t), y(t− σ1), · · · , y(t− σν)) for t0 ≤ t ≤ tF

y(t) = φ(t), for t ≤ t0

σi = σi(t, y(t)) ≥ 0 delay (constant / time dependent / state dependent)

φ(t) history function (constant / time dependent)

� Neutral Delay Differential Equations (NDDEs)

y′(t) = f(t, y(t), y(t− σ1), · · · , y(t− σν),

y′(t− σν+1), · · · , y′(t− σν+ω)) for t0 ≤ t ≤ tF

y(t) = φ(t), y′(t) = φ′(t), for t ≤ t0,

SONAD 2008 – p.3/21

Page 4: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - Some Areas of Application

Area Example

Ecology predator-prey

Epidemiology spread of infections

Immunology immune response models

HIV infection

Physiology human respiration system

Neural Networks

Cell Kinetics

Chemical Kinetics The Oregonator

Physics Ring Cavity Lasers , two-body problem of electrodynamics

SONAD 2008 – p.4/21

Page 5: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - An Example

� A neutral delay logistic Gause-type predator-prey system [Kuang 1991]

y′

1(t) = y1(t)(1− y1(t− τ)− ρy′

1(t− τ))−y2(t)y1(t)

2

y1(t)2 + 1

y′

2(t) = y2(t)

(

y1(t)2

y1(t)2 + 1− α

)

where α = 1/10 , ρ = 29/10 and τ = 21/50, for t in [0, 30]. The history functionsare

φ1(t) =33

100−

1

10t

φ2(t) =111

50+

1

10t

for t ≤ 0.

SONAD 2008 – p.5/21

Page 6: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - An Example

� The predator-prey model

0 5 10 15 20 25 300.31

0.32

0.33

0.34

0.35

0.36

0.37

t

y1

0 5 10 15 20 25 302.21

2.215

2.22

2.225

2.23

2.235

2.24

2.245

2.25

2.255

t

y2

SONAD 2008 – p.5/21

Page 7: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - Numerical Simulation

� Classical Theory of Step by Step Integration for IVPs.

� Runge-Kutta (RK).

� Linear Multistep (LM).

+

� Continuous Solution using Polynomial Approximation.

� Continuous Runge-Kutta (CRK).

� Linear Multistep methods have natural approximating polynomials.

� DDEs : Combining an “interpolation” method (for evaluating delayed solutionvalues) with an ODE integration method (for solving the resulting “ODE”).

SONAD 2008 – p.6/21

Page 8: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling with DE - Special Difficulties with DDEs

� Derivative Discontinuities

In general

φ′(t0) 6= f(t0, φ(t0), φ(t0 − σ1), · · · , φ(t0 − σν))

Due to the existence of delays, discontinuities propagate along the

integration interval.

Solution is smoothed for RDDEs but in general not for NDDEs.

The RK and LM methods fail in presence of discontinuities.

Treatment : Tracking Discontinuities and forcing them to be mesh points.

SONAD 2008 – p.7/21

Page 9: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Sensitivity Analysis - Definitions

� Parameterized Models

� A parameterized IVP

y′(t;p) = f(t, y(t;p);p)

y(t0) = y0(p)

For example p = [µ] in the Van der Pol oscillator

y′

1(t) = y2(t)

y′

2(t) = µ(1− y21)y2 − y1

� A simple parameterized DDE

y′(t;p) = f(t, y(t;p), y(t− σ(t;p));p) for t0(p) ≤ t

y(t;p) = φ(t;p), for t ≤ t0(p)

SONAD 2008 – p.8/21

Page 10: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Sensitivity Analysis - Definitions

� Forward Sensitivity Analysis

� The (first order) solution sensitivity with respect to the model parameter pi isdefined as the vector

si(t;p) = {∂

∂pi

}y(t;p), (i = 1, . . . ,L)

� The second order solution sensitivity with respect to the model parameterspi and pj is defined as the vector

rij(t;p) = {∂

∂pj

}si(t;p) = {∂2

∂pj∂pi

}y(t;p), (i, j = 1, . . . ,L)

SONAD 2008 – p.8/21

Page 11: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Sensitivity Analysis - Importance

Sensitivity information can be used to:

� Estimate which parameters are most influential in affecting the behavior of thesimulation. Such information is crucial for

� Experimental Design

� Data Assimilation

� Reduction of complex nonlinear models

� Study of Dynamical Systems : Periodic orbits, the Lyapunov exponents, chaosindicators, and bifurcation analysis are fundamental objects for the completestudy of a dynamical system, and they require computation of the sensitivitieswith respect to the initial conditions of the problem.

� Evaluate optimization gradients and Jacobians in the setting of

� Dynamic Optimization

� Parameter Estimation

SONAD 2008 – p.9/21

Page 12: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Numerical Sensitivity Analysis of IVPs - Forward

� Finite Difference Approach

{ ∂

∂pi

}y(t;p) ≈ y(t;p + ei∆pi) − y(t;p)

∆pi

Due to the rounding errors, the approximation is only O(√

Tol) with the best choice for∆pi.

� Internal Differentiation

y′(t;p) = f(t, y(t;p);p), y(t0) = y0(p)

Differentiation + Chain Rule + Clairaut’s Theorem

s′

i =∂f

∂ysi +

∂f

∂pi

, si(t0) =∂y0(p)

∂pi

, (i = 1, . . .L)

� Taylor Series method using extended rules of AD [Barrio 2006].⇒ second(or higher)-order sensitivities.

SONAD 2008 – p.10/21

Page 13: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Numerical Sensitivity Analysis of IVPs - An Example

� The Van der Pol oscillator

y′

1(t) = y2(t)

y′

2(t) = µ(1− y21)y2 − y1

s′1(1)(t)

s′1(2)(t)

=

0 1

−2µy1y2 − 1 µ(1− y21)

s1(1)

s1(2)

+

0

(1− y21)y2

s′1(1)(t) = s1(2)

s′1(2)(t) = (−2µy1y2 − 1)s1(1)

+ µ(1− y21)s1(2)

+ (1− y21)y2

SONAD 2008 – p.11/21

Page 14: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Numerical Sensitivity Analysis of IVPs - An Example

� The Van der Pol oscillator (∆p = 0.2). The decrease of y1 at t = 20 can be explained as second

order sensitivities being dominant ( ∂y1∂µ

(t = 20) ' 0 , ∂2y1∂µ2 (t = 20) < 0).

0 5 10 15 20−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y1

0 5 10 15 20−8

−6

−4

−2

0

2

4

6

t

∂y1

∂µ

0 5 10 15 20−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y 1(p

+∆

p)

0 5 10 15 20−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y 1(p−

∆p)

SONAD 2008 – p.11/21

Page 15: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Governing Equations

y′(t;p) = f(t, y(t;p), y(α(t, y;p);p), y′(α(t, y;p);p);p)

y(t;p) = φ(t;p), for t ≤ t0(p)

Differentiation + Chain Rule + Clairaut’s Theorem

s′i(t) =∂f

∂ysi(t) +

∂f

∂y(αk)

(

y′(αk)

(

∂α

∂ysi(t) +

∂α

∂p

)

+ si(α)

)

+∂f

∂y′(α)

(

y′′(α)

(

∂α

∂ysi(t) +

∂α

∂p

)

+ s′i(α)

)

+∂f

∂p

SONAD 2008 – p.12/21

Page 16: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Proper Handling of Jumps

� Hybrid ODE systems [Tolsma & Barton]

� Continuous transition at t = λ,

y(λ+) = y(λ−)

∂y

∂pl

(λ+) =∂y

∂pl

(λ−) +(

y′(λ−)− y′(λ+)) ∂λ

∂pl

� Triggered by,

g(t, y, y′;p) = 0

∂g

∂y′

(

∂t

(

∂y

∂pl

)

+ y′′∂λ

∂pl

)

+∂g

∂y

(

∂y

∂pl

+ y′∂λ

∂pl

)

+∂g

∂pl

+∂g

∂t

∂λ

∂pl

= 0

SONAD 2008 – p.13/21

Page 17: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Proper Handling of Jumps

� DDEs

� Discontinuity points of y′(t;p),

Λ(p) ≡ {λ1(p), λ2(p), . . .}.

� Identified by,

α(λr+1(p), y;p) = λr(p) r = 1, 2, . . .

� Can be viewed as λr+1(p) being a solution of,

g(t, y;p) = α(t, y;p)− λr(p) = 0.

� Using the result for hybrid ODEs,

∂λr+1(p)

∂pl

= −

∂α∂y

∂y∂pl

+ ∂α∂pl

− ∂λr(p)∂pl

∂α∂y

y′ + ∂α∂t

for r ≥ 1

∂λ1(p)

∂pl

=∂t0(p)

∂pl

SONAD 2008 – p.13/21

Page 18: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Proper Handling of Jumps

� Integration (first order sensitivities)

1. Initialize (λ1 = t0(p)).

2. r ← 1.

3. Integrate the equations up to a C1-discontinuity point (λr+1).

4. Update the state variables (sensitivities) using

∂y

∂pl

(λ+r+1) =

∂y

∂pl

(λ−

r+1) +(

y′(λ−

r+1)− y′(λ+r+1)

) ∂λr+1(p)

∂pl

5. r ← r + 1 and restart (3).

SONAD 2008 – p.13/21

Page 19: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Examples

� The predator-prey model

y′1(t) = y1(t)(1 − y1(t − τ) − ρy′

1(t − τ)) −y2(t)y1(t)2

y1(t)2 + 1

y′2(t) = y2(t)

(

y1(t)2

y1(t)2 + 1− α

)

where α = 1/10 , ρ = 29/10 and τ = 21/50, for t in [0, 30]. The history functions are

φ1(t) =33

100−

1

10t

φ2(t) =111

50+

1

10t

for t ≤ 0.

Parameters are

p = [τ, ρ, α, a, b, c, d]

where

φ1(t) = a + b t

φ2(t) = c + d t

SONAD 2008 – p.14/21

Page 20: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Examples

� The predator-prey model (structure-related parameters, y1)

0 5 10 15 20 25 300.31

0.32

0.33

0.34

0.35

0.36

0.37

t

y1

0 5 10 15 20 25 30−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

∂y1

∂τ

0 5 10 15 20 25 30−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t

∂y1

∂ρ

0 5 10 15 20 25 300

0.5

1

1.5

2

2.5

t

∂y1

∂α

SONAD 2008 – p.14/21

Page 21: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Examples

� The predator-prey model (structure-related parameters, y2)

0 5 10 15 20 25 302.21

2.215

2.22

2.225

2.23

2.235

2.24

2.245

2.25

2.255

t

y2

0 5 10 15 20 25 30−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

∂y2

∂τ

0 5 10 15 20 25 30−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

t

∂y2

∂ρ

0 5 10 15 20 25 30−18

−16

−14

−12

−10

−8

−6

−4

−2

0

t

∂y2

∂α

SONAD 2008 – p.14/21

Page 22: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Examples

� The predator-prey model (history-related parameters, y1)

0 5 10 15 20 25 30−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

∂y1

∂a

0 5 10 15 20 25 30−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t

∂y1

∂b

0 5 10 15 20 25 30−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

t

∂y1

∂c

0 5 10 15 20 25 30−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t

∂y1

∂d

SONAD 2008 – p.14/21

Page 23: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Sensitivity Analysis - Examples

� The predator-prey model (history-related parameters, y2)

0 5 10 15 20 25 30−0.5

0

0.5

1

1.5

2

t

∂y2

∂a

0 5 10 15 20 25 30−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

∂y2

∂b

0 5 10 15 20 25 30−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

∂y2

∂c

0 5 10 15 20 25 30−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

t

∂y2

∂d

SONAD 2008 – p.14/21

Page 24: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Parameter Estimation - Definitions

� Parameter Estimation Problem

� A System of Parameterized IVP

y′(t;p) = f(t, y(t;p);p)

y(t0) = y0(p)

or DDE

y′(t;p) = f(t, y(t;p), y(t− σ(t;p));p) for t0(p) ≤ t

y(t;p) = φ(t;p), for t ≤ t0(p)

� A Set of Data (Observations/Measurements)

{Y (γi) ≈ y(γi;p⋆)}

� Estimate p⋆ by minimizing an objective function.

e.g.

W (p) =∑

i

[Y (γi)− y(γi;p)]2.

SONAD 2008 – p.15/21

Page 25: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Parameter Estimation - Importance

Physical/Biological Phenomenon

Mathematical Model

Refined Mathematical Model

Practical Mathematical Model

Physical Laws / Empirical Rules

Sensitivity Analysis

Parameter Estimation

Observed Data

SONAD 2008 – p.16/21

Page 26: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Modeling and Parameter Estimation - Optimizers

� Algorithms for Nonlinear Least-Squares� Unconstrained

minp

W (p) =∑

i

[Y (γi) − y(γi;p)]2 .

Levenberg-MarquardtVariations of Sequential Quadratic Programming (SQP)

� Constrained

minp

W (p) =∑

i

[Y (γi) − y(γi;p)]2 ,

cj(p) = 0, j ∈ E,

cj(p) ≥ 0, j ∈ I.

Sequential Quadratic Programming (SQP)

� The smoothness of functions involved in the problem, theobjective function and constraints, is a necessary assumption.

SONAD 2008 – p.17/21

Page 27: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

Numerical Parameter Estimation of IVPs

Steps :

1. Choose an initial guess for the parameters

2. Solve model equations

3. Check optimality conditions, (if satisfied ⇒ stop).

4. Choose a better value for the parameters and continue with (2)

If the optimization method needs to compute the gradient or the Hessian of the objectivefunction,

(

∂W (p)

∂pl

)

= −2∑

i

[Y (γi) − y(γi;p)]

(

∂y(γi;p)

∂pl

)

(

∂2W (p)

∂pl∂pm

)

= 2∑

i

[(

∂y(γi;p)

∂pl

) (

∂y(γi;p)

∂pm

)

− [Y (γi) − y(γi;p)]

(

∂2y(γi;p)

∂pl∂pm

)]

the sensitivity equations are usually used to provide the required values. An alternativeapproach is to use a divided-difference approximation.

SONAD 2008 – p.18/21

Page 28: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation

[ Paul , 1997 ] :Assume that jumps in the derivative of y(t;p) with respect to t occur at the points

Λ(p) ≡ {λ1(p), λ2(p), . . .}.

Such discontinuities, when arising from the initial point t0(p) (and the initial function φ(t;p)),may propagate into W (p) via the solution values {y(γi;p)}.

The first and second order partial derivatives of the objective function are(

∂W (p)

∂pl

)

±

= −2∑

i

[Y (γi) − y(γi;p)]

(

∂y(γi;p)

∂pl

)

±

(

∂2W (p)

∂pl∂pm

)

±±

= 2∑

i

[

(

∂y(γi;p)

∂pl

)

±

(

∂y(γi;p)

∂pm

)

±

− [Y (γi) − y(γi;p)]

(

∂2y(γi;p)

∂pl∂pm

)

±±

]

SONAD 2008 – p.19/21

Page 29: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation

� Non-smooth optimization

� Consider the continuous function

y(t) =

−5(t − τ) + c, if t < τ

5(t − τ) + c, if t ≥ τ

� with discontinuous derivative

y′(t) =

−5, if t < τ

5, if t ≥ τ

� and observed value of y at the discontinuity point τ⋆ = 4.

SONAD 2008 – p.19/21

Page 30: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation

0 1 2 3 4 5 6 70

5

10

15

20

25

y(t

)

c

SONAD 2008 – p.19/21

Page 31: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation

3 3.5 4 4.5 5−60

−40

−20

0

20

40

60

τ

W(τ )

∂W(τ )

∂τ

SONAD 2008 – p.19/21

Page 32: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation

� Try to find τ⋆ using MATLAB’s unconstrained minimization routine fminunc

31 iterations .

� Try to use MATLAB’s constrained minimization routine fminconwith the added constraint

τ ≤ 4

2 iterations .

� Try to use MATLAB’s constrained minimization routine fminconwith the added constraint

τ ≥ 4

2 iterations .

SONAD 2008 – p.19/21

Page 33: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation - Safe Minimization

� Appearance of Non-smoothness� Partial derivatives(gradient) of the objective function

(

∂W (p)

∂pl

)

±

= −2∑

i

[Y (γi) − y(γi;p)]

(

∂y(γi;p)

∂pl

)

±

(

∂2W (p)

∂pl∂pm

)

±±

= 2∑

i

(

∂y(γi;p)

∂pl

)

±

(

∂y(γi;p)

∂pm

)

±

− [Y (γi) − y(γi;p)]

(

∂2y(γi;p)

∂pl∂pm

)

±±

� Recall the jump equation for sensitivities

∂y

∂pl

(λ+r+1) =

∂y

∂pl

(λ−

r+1) +(

y′(λ−

r+1)− y′(λ+r+1)

) ∂λr+1(p)

∂pl

� The General Rule : A jump occurs in W (p) when

a discontinuity point λr+1(p) passes a data point γi

SONAD 2008 – p.20/21

Page 34: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation - Safe Minimization

� Avoiding The Non-smoothness

t

y

λr(p) γi λr+1(p)

t

y

λr(p)

γi

λr+1(p)

true solutioncontiniously extended solutiondiscontinuity pointdata point

Force the ordering by adding λr(p) ≤ γi ≤ λr+1(p) to the set of constraints.

The partial derivatives (gradient) of the new constraints ,∂λr+1(p)

∂p, can be computed recursively.

SONAD 2008 – p.20/21

Page 35: The Sensitivity Analysis and Parameter Estimation of ...The Sensitivity Analysis and Parameter Estimation of ... φ1(t) = 33 100 ... 0.2 t ∂y1 ∂b 0 5 10 15 20 25 30 −0.14 −0.12

DDEs and Parameter Estimation - A Test Case

� Estimating τ for the predator-prey model

y′1(t) = y1(t)(1 − y1(t − τ) − ρy′

1(t − τ)) −y2(t)y1(t)2

y1(t)2 + 1

y′2(t) = y2(t)

(

y1(t)2

y1(t)2 + 1− α

)

� Start with up to 10% random perturbation in original τ ,and up to 3% randomly perturbed y(t; τ) as Data (Y ).For γ’s we choose 10 random points, one of which is a discontinuity point.

� Run the parameter estimator 3 times.

� Results

Estimator Choice FCN OBJ

Very Simple 72,2697 0.000142917

Using Sensitivities 26,942 0.000142917

Adding Constraints 9,916 0.000142917

SONAD 2008 – p.21/21