The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the...

54
The Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 1 / 25

Transcript of The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the...

Page 1: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

The Heisenberg Representation and the Fast FourierTransform

Shamgar Gurevich

UW Madison

July 31, 2014

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 1 / 25

Page 2: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Motivation:

Discrete Fourier Transform

DFT =1√N

(e2πiN τ·ω

)0≤τ,ω≤N−1

Compute:

f̂ = DFT [f ]; f =

f (0)...

f (N − 1)

; Fast!!

Cooley—Tukey (1965): O(N · log(N)) operations!

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 2 / 25

Page 3: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Motivation:

Discrete Fourier Transform

DFT =1√N

(e2πiN τ·ω

)0≤τ,ω≤N−1

Compute:

f̂ = DFT [f ]; f =

f (0)...

f (N − 1)

; Fast!!

Cooley—Tukey (1965): O(N · log(N)) operations!

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 2 / 25

Page 4: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Motivation:

Discrete Fourier Transform

DFT =1√N

(e2πiN τ·ω

)0≤τ,ω≤N−1

Compute:

f̂ = DFT [f ]; f =

f (0)...

f (N − 1)

; Fast!!

Cooley—Tukey (1965): O(N · log(N)) operations!Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 2 / 25

Page 5: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.

f : {0, ....,N − 1} → C.

Basic operations

Time shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 6: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.f : {0, ....,N − 1} → C.

Basic operations

Time shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 7: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.f : {0, ....,N − 1} → C.

Basic operations

Time shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 8: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.f : {0, ....,N − 1} → C.

Basic operationsTime shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 9: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.f : {0, ....,N − 1} → C.

Basic operationsTime shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 10: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Solution (Auslander—Tolimieri)(I) Heisenberg Group Representation

H = C(ZN ) – Hilbert space of digital signals.f : {0, ....,N − 1} → C.

Basic operationsTime shift: τ ∈ ZN ,

Lτ : H → H,Lτ [f ](t) = f (t + τ), t ∈ ZN .

Frequency shift: ω ∈ ZN ,

Mω : H → H,Mω [f ](t) = e

2πiN ωt f (t).

Note:

Mω ◦ Lτ = e2πiN ωτ · Lτ ◦Mω – Heisenberg commutation relations

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 3 / 25

Page 11: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 12: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).

Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 13: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 14: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 15: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 16: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 17: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);

(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 18: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Combine: τ,ω, z ∈ ZN

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Identity:

π(τ,ω, z) ◦ π(τ′,ω′, z ′) = π(τ + τ′,ω+ω′, z + z ′ +12

∣∣∣∣ τ ωτ′ ω′

∣∣∣∣).Question. How to think on this?

Answer. Heisenberg group:

H = ZN ×ZN︸ ︷︷ ︸V

× ZN︸︷︷︸Z

;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12

∣∣∣∣ vv ′∣∣∣∣);

(0, 0) · (v , z) = (v , z) · (0, 0) = (v , z);(v , z) · (−v ,−z) = (−v ,−z) · (v , z) = (0, 0).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 4 / 25

Page 19: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Summary: Heisenberg Rep’nπ : H → GL(H);

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ;

π(h · h′) = π(h) ◦ π(h′) – homomorphism.

DefinitionA representation of a group H on a complex vector space H is ahomomorphism

π : H → GL(H),π(h · h′) = π(h) ◦ π(h′).

Question. DFT ?

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 5 / 25

Page 20: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Summary: Heisenberg Rep’nπ : H → GL(H);

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ;

π(h · h′) = π(h) ◦ π(h′) – homomorphism.

DefinitionA representation of a group H on a complex vector space H is ahomomorphism

π : H → GL(H),π(h · h′) = π(h) ◦ π(h′).

Question. DFT ?

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 5 / 25

Page 21: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Heisenberg Rep’n, cont.

Summary: Heisenberg Rep’nπ : H → GL(H);

π(τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ;

π(h · h′) = π(h) ◦ π(h′) – homomorphism.

DefinitionA representation of a group H on a complex vector space H is ahomomorphism

π : H → GL(H),π(h · h′) = π(h) ◦ π(h′).

Question. DFT ?

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 5 / 25

Page 22: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

(II) Representation Theory

DefinitionsWe say that (π1,H,H1), (π2,H,H2) are equivalent, π1 ' π2, if

∃ α : H1→̃H2 − Intertwiner,

such that for every h ∈ H

H1π1(h)−−−→ H1yα

H2π2(h)−−−→ H2

i.e., α ◦ π1(h) = π2(h) ◦ α.

Example: DFT is an intertwiner!

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 6 / 25

Page 23: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

(II) Representation Theory

DefinitionsWe say that (π1,H,H1), (π2,H,H2) are equivalent, π1 ' π2, if

∃ α : H1→̃H2 − Intertwiner,

such that for every h ∈ H

H1π1(h)−−−→ H1yα

H2π2(h)−−−→ H2

i.e., α ◦ π1(h) = π2(h) ◦ α.

Example: DFT is an intertwiner!

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 6 / 25

Page 24: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Rep’n Theory, cont.

H = V × Z = ZN︸︷︷︸T

× ZN︸︷︷︸W

× ZN︸︷︷︸Z

Time representation: HT = C(T ){πT : H → GL(HT );

πT (τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Frequency representation: HW = C(W ){πW : H → GL(HW );

πW (τ,ω, z) = e2πiN {−

12ωτ+z} ·Mτ ◦ L−ω.

Fact:DFT ◦ πT (h) = πW (h) ◦DFT ,

whereDFT [f ](w) =

1√N

∑t∈ZN

f (t)e2πiN wt .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 7 / 25

Page 25: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Rep’n Theory, cont.

H = V × Z = ZN︸︷︷︸T

× ZN︸︷︷︸W

× ZN︸︷︷︸Z

Time representation: HT = C(T ){πT : H → GL(HT );

πT (τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Frequency representation: HW = C(W ){πW : H → GL(HW );

πW (τ,ω, z) = e2πiN {−

12ωτ+z} ·Mτ ◦ L−ω.

Fact:DFT ◦ πT (h) = πW (h) ◦DFT ,

whereDFT [f ](w) =

1√N

∑t∈ZN

f (t)e2πiN wt .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 7 / 25

Page 26: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Rep’n Theory, cont.

H = V × Z = ZN︸︷︷︸T

× ZN︸︷︷︸W

× ZN︸︷︷︸Z

Time representation: HT = C(T ){πT : H → GL(HT );

πT (τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Frequency representation: HW = C(W ){πW : H → GL(HW );

πW (τ,ω, z) = e2πiN {−

12ωτ+z} ·Mτ ◦ L−ω.

Fact:DFT ◦ πT (h) = πW (h) ◦DFT ,

whereDFT [f ](w) =

1√N

∑t∈ZN

f (t)e2πiN wt .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 7 / 25

Page 27: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Rep’n Theory, cont.

H = V × Z = ZN︸︷︷︸T

× ZN︸︷︷︸W

× ZN︸︷︷︸Z

Time representation: HT = C(T ){πT : H → GL(HT );

πT (τ,ω, z) = e2πiN {

12ωτ+z} ·Mω ◦ Lτ.

Frequency representation: HW = C(W ){πW : H → GL(HW );

πW (τ,ω, z) = e2πiN {−

12ωτ+z} ·Mτ ◦ L−ω.

Fact:DFT ◦ πT (h) = πW (h) ◦DFT ,

whereDFT [f ](w) =

1√N

∑t∈ZN

f (t)e2πiN wt .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 7 / 25

Page 28: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

(III) FFT Algorithm

Idea:HT

fast−−−→ HΛ

slow

yDFT ∥∥∥HW ←−−−

fastHΛ

More representation theory:

DefinitionA rep’n (π,H,H) is irreducible if

@ 0 6= H′ H

such thatπ(h) · H′ ⊂ H′, ∀h ∈ H.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 8 / 25

Page 29: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

(III) FFT Algorithm

Idea:HT

fast−−−→ HΛ

slow

yDFT ∥∥∥HW ←−−−

fastHΛ

More representation theory:

DefinitionA rep’n (π,H,H) is irreducible if

@ 0 6= H′ H

such thatπ(h) · H′ ⊂ H′, ∀h ∈ H.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 8 / 25

Page 30: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

(III) FFT Algorithm

Idea:HT

fast−−−→ HΛ

slow

yDFT ∥∥∥HW ←−−−

fastHΛ

More representation theory:

DefinitionA rep’n (π,H,H) is irreducible if

@ 0 6= H′ H

such thatπ(h) · H′ ⊂ H′, ∀h ∈ H.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 8 / 25

Page 31: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: more RT

Theorem (Stone—von Neumann)

If (πj ,H,Hj ), j = 1, 2, are irreducible representations of the Heisenberggroup H = V × Z , with

πj (z) = e2πiN z · IdHj , ∀z ∈ Z ,

then π1 ' π2 are equivalent, i.e., ∃ α : H1→̃H2 such that

α ◦ π1(h) = π2(h) ◦ α, ∀h ∈ H. (1)

Theorem (Schur’s lemma)

If π1 ' π2 equivalent irreducible representations, and if α, α′ satisfyequation (1), then

α = c · α′, for some scalar c .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 9 / 25

Page 32: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: more RT

Theorem (Stone—von Neumann)

If (πj ,H,Hj ), j = 1, 2, are irreducible representations of the Heisenberggroup H = V × Z , with

πj (z) = e2πiN z · IdHj , ∀z ∈ Z ,

then π1 ' π2 are equivalent, i.e., ∃ α : H1→̃H2 such that

α ◦ π1(h) = π2(h) ◦ α, ∀h ∈ H. (1)

Theorem (Schur’s lemma)

If π1 ' π2 equivalent irreducible representations, and if α, α′ satisfyequation (1), then

α = c · α′, for some scalar c .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 9 / 25

Page 33: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: Models of Heisenberg Rep’n

Examples

(1) Time model: V ⊃ T = {(t, 0); t ∈ ZN}

πT : H → GL(HT ).

(2) Frequency model: V ⊃ W = {(0,w); w ∈ ZN}

πW : H → GL(HW ).

CorollaryDFT : HT → HW – unique (up to a scalar) intertwiner between πT andπW .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 10 / 25

Page 34: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: Models of Heisenberg Rep’n

Examples(3) W—invariant model:Space:

HW =

f : H → C,

f (w · h) = f (h), ∀ w ∈ W , h ∈ H,f (z · h) = e 2πi

N z · f (h), ∀ z ∈ Z , h ∈ H.

Action: {πW : H → GL(HW ),

[πW (h′)f ](h) = f (h · h′).

Remark: We have a natural identification HT = HW , given by

f 7→ f̃ (wtz) = e2πiN z · f (t).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 11 / 25

Page 35: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Think on W-invariant functions as functions on T

A function f (t) on T = {(t, 0, 0); t ∈ Z/52}

0

5

10

15

20

25

0

5

10

15

20

25­0. 2

­0. 15

­0. 1

­0. 05

0

0.05

0.1

0.15

0.2

TW

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 12 / 25

Page 36: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: Models of Heisenberg Rep’n

Examples(4) T—invariant model:Space:

HT =

g : H → C,

g(t · h) = g(h), ∀ t ∈ T , h ∈ H,g(z · h) = e 2πi

N z · g(h), ∀ z ∈ Z , h ∈ H.

Action: {πT : H → GL(HT ),

[πT (h′)g ](h) = g(h · h′).

Remark: We have a natural identification HW = HT , given by

g 7→ g̃(twz) = e2πiN z · g(w).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 13 / 25

Page 37: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Think on T-invariant functions as functions on W

A function g(w) on W = {(0,w , 0); w ∈ Z/52}

0

5

10

15

20

25

0

5

10

15

20

25­0 .2

­0 .15

­0 .1

­0 .05

0

0.05

0 .1

0 .15

0 .2

TW

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 14 / 25

Page 38: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: The Arithmetic Model

Examples

(5) Arithmetic model: N = p2

Lagrangian: V = Z/p2 ×Z/p2 ⊃ Λ = {(p · a, p · b)}Space:

HΛ =

F : H → C,

F (λ · h) = F (h), ∀ λ ∈ Λ, h ∈ H,F (z · h) = e 2πi

N z · F (h), ∀ z ∈ Z , h ∈ H.

Action:πΛ : H → GL(HΛ), [πΛ(h′)F ](h) = F (h · h′).

Remark: We have a natural identification of HΛ with functionsF (x , y) on {0, ..., p − 1} × {0, ..., p − 1}

F 7→ F̃ (λ · (x , y , 0) · z) = e 2πiN z · F (x , y), λ ∈ Λ.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 15 / 25

Page 39: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Think on Lambda-invariant functions as functions on{0,...,p-1} x {0,...,p-1}

A function F (x , y) on (x , y) ∈ {0, ..., 4} × {0, ..., 4}, p = 5,

05

1015

2025

05

1015

2025­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Y X

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 16 / 25

Page 40: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT: The Algorithm

Algorithm: Case N = p2

HTDFT−−−→p4

HW

saw

y xsawHW HT

∑λ∈Λ f (λh)

y? ?

x∑t∈T F (tw )

HΛ HΛ

Observation (the saving!): For f ∈ HW , if λ,λ′ ∈ Λ differ by anelement of W , i.e., λ = wλ′, then

f (λh) = f (wλ′h) = f (λ′h), ∀h ∈ H.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 17 / 25

Page 41: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT: The Algorithm

Algorithm: Case N = p2

HTDFT−−−→p4

HW

saw

y xsawHW HT

∑λ∈Λ f (λh)

y? ?

x∑t∈T F (tw )

HΛ HΛ

Observation (the saving!): For f ∈ HW , if λ,λ′ ∈ Λ differ by anelement of W , i.e., λ = wλ′, then

f (λh) = f (wλ′h) = f (λ′h), ∀h ∈ H.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 17 / 25

Page 42: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithms: The Summands

So for a fixed h it is enough to know the summands f (λh), in thetransform, only for λ ∈ Λ/[Λ ∩W ] = {(0, 0), (p, 0), ..., ((p − 1)p, 0)}.

Example for p = 5

0

5

10

15

20

25

0

5

10

15

20

25

­0. 2

0

0.2

TW

Enough  to  know  summands here

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 18 / 25

Page 43: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: The Saving

So we have

∑λ∈Λ

f (λh) = ∑λ∈Λ/[Λ∩W ]

f (λh) ·#(Λ ∩W ).

Only p = p2/p = #(Λ/[Λ ∩W ]) summands !!!.

Complexity of the algorithm

p2︸︷︷︸values of h

· p︸︷︷︸summands

+ p2 · p︸ ︷︷ ︸second operator

= p ·p2 · (1+ 1) = p︸︷︷︸constant

·N · log(N).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 19 / 25

Page 44: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: The Saving

So we have

∑λ∈Λ

f (λh) = ∑λ∈Λ/[Λ∩W ]

f (λh) ·#(Λ ∩W ).

Only p = p2/p = #(Λ/[Λ ∩W ]) summands !!!.Complexity of the algorithm

p2︸︷︷︸values of h

· p︸︷︷︸summands

+ p2 · p︸ ︷︷ ︸second operator

= p ·p2 · (1+ 1) = p︸︷︷︸constant

·N · log(N).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 19 / 25

Page 45: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: Schur’s lemma

Denote the intertwiners by

FFTΛ,W : HW → HΛ, and FFTT ,Λ : HΛ → HT .

WhyDFT = FFTT ,Λ ◦ FFTΛ,W ? (2)

In fact by Schur’s lemma: Both sides of (2) intertwine πW and πT ,so

DFT = c · FFTT ,Λ ◦ FFTΛ,W

for some scalar c . Easy to compute c = 1p .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 20 / 25

Page 46: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: Schur’s lemma

Denote the intertwiners by

FFTΛ,W : HW → HΛ, and FFTT ,Λ : HΛ → HT .

WhyDFT = FFTT ,Λ ◦ FFTΛ,W ? (2)

In fact by Schur’s lemma: Both sides of (2) intertwine πW and πT ,so

DFT = c · FFTT ,Λ ◦ FFTΛ,W

for some scalar c . Easy to compute c = 1p .

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 20 / 25

Page 47: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Numerics for n=25

Start with the exponent function f (t) = e2πi25 t/5 on T = Z/25

0 5 10 15 20 25­0. 2

­0. 15

­0. 1

­0. 05

0

0. 05

0. 1

0. 15

0. 2

T

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 21 / 25

Page 48: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Numerics for n=25 : FFT(f)

Apply FFT and get g(w) = FFT [f ](w) on W = Z/25

0 5 10 15 20 25­0. 2

0

0.2

0.4

0.6

0.8

1

1.2

W

Indeed this is g(w) = δ1(w).

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 22 / 25

Page 49: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: General

N = pk , k ≥ 1

V = Z/pk ×Z/pk

Good Lagrangian sequence ("interpolating" W and T )

Λ• : Λj = {(pk−j · a, pj · b)}, j = 0, ..., k ,

with LARGE intersections

# Λj ∩Λj+1 = pk−1.

FFT Algorithm

HW FFT Λ1 ,W→ HΛ1 → · · · → HΛk−1 FFTT ,Λk→ HT

DFT =1√pk· FFTT ,Λk−1 ◦ · · · ◦ FFTΛ1,W ,

with complexity

pk︸︷︷︸values of h

· { k︸︷︷︸k operators

· # Λj+1/(Λj ∩Λj+1)︸ ︷︷ ︸p summands

} = p︸︷︷︸constant

·pk︸︷︷︸N

· log(pk )︸ ︷︷ ︸log(N )

.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 23 / 25

Page 50: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: General

N = pk , k ≥ 1V = Z/pk ×Z/pk

Good Lagrangian sequence ("interpolating" W and T )

Λ• : Λj = {(pk−j · a, pj · b)}, j = 0, ..., k ,

with LARGE intersections

# Λj ∩Λj+1 = pk−1.

FFT Algorithm

HW FFT Λ1 ,W→ HΛ1 → · · · → HΛk−1 FFTT ,Λk→ HT

DFT =1√pk· FFTT ,Λk−1 ◦ · · · ◦ FFTΛ1,W ,

with complexity

pk︸︷︷︸values of h

· { k︸︷︷︸k operators

· # Λj+1/(Λj ∩Λj+1)︸ ︷︷ ︸p summands

} = p︸︷︷︸constant

·pk︸︷︷︸N

· log(pk )︸ ︷︷ ︸log(N )

.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 23 / 25

Page 51: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: General

N = pk , k ≥ 1V = Z/pk ×Z/pk

Good Lagrangian sequence ("interpolating" W and T )

Λ• : Λj = {(pk−j · a, pj · b)}, j = 0, ..., k ,

with LARGE intersections

# Λj ∩Λj+1 = pk−1.

FFT Algorithm

HW FFT Λ1 ,W→ HΛ1 → · · · → HΛk−1 FFTT ,Λk→ HT

DFT =1√pk· FFTT ,Λk−1 ◦ · · · ◦ FFTΛ1,W ,

with complexity

pk︸︷︷︸values of h

· { k︸︷︷︸k operators

· # Λj+1/(Λj ∩Λj+1)︸ ︷︷ ︸p summands

} = p︸︷︷︸constant

·pk︸︷︷︸N

· log(pk )︸ ︷︷ ︸log(N )

.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 23 / 25

Page 52: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

FFT Algorithm: General

N = pk , k ≥ 1V = Z/pk ×Z/pk

Good Lagrangian sequence ("interpolating" W and T )

Λ• : Λj = {(pk−j · a, pj · b)}, j = 0, ..., k ,

with LARGE intersections

# Λj ∩Λj+1 = pk−1.

FFT Algorithm

HW FFT Λ1 ,W→ HΛ1 → · · · → HΛk−1 FFTT ,Λk→ HT

DFT =1√pk· FFTT ,Λk−1 ◦ · · · ◦ FFTΛ1,W ,

with complexity

pk︸︷︷︸values of h

· { k︸︷︷︸k operators

· # Λj+1/(Λj ∩Λj+1)︸ ︷︷ ︸p summands

} = p︸︷︷︸constant

·pk︸︷︷︸N

· log(pk )︸ ︷︷ ︸log(N )

.

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 23 / 25

Page 53: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

Conclusion

Conclusion:

Λ• =⇒ Cooley—Tukey FFT

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 24 / 25

Page 54: The Heisenberg Representation and the Fast Fourier TransformThe Heisenberg Representation and the Fast Fourier Transform Shamgar Gurevich UW Madison July 31, 2014 Shamgar Gurevich

THANK YOU

Thank You!

Shamgar Gurevich (UW Madison) Heisenberg Repn and FFT July 31, 2014 25 / 25