The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a...

22
Motivation Methodology and data Application to SDSS Conclusions The flickering luminosity method Martin Feix in collaboration with Adi Nusser (Technion) and Enzo Branchini (Roma Tre) Institut d’Astrophysique de Paris SSG16 Workshop, February 2nd 2016

Transcript of The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a...

Page 1: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

The flickering luminosity method

Martin Feixin collaboration with Adi Nusser (Technion) and Enzo Branchini (Roma Tre)

Institut d’Astrophysique de Paris

SSG16 Workshop,February 2nd 2016

Page 2: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Outline

1 MotivationΛCDM modelGrowth rate of density perturbationsRSDs

2 Methodology and data

3 Application to SDSS

4 Conclusions

Page 3: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

The Universe in a nutshellThe ΛCDM cosmological model

Planck’s cosmic recipe

Image credit: ESA and the Planck Collaboration

Page 4: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Growth rate of density perturbationsProbing the nature of cosmic acceleration

z = 6

z = 2

z = 0

δ(x, z) = D(z)δ0(x)

f (Ω) =d log Dd log a

' Ωγ(a)→ growth rate

Image credit: V. Springel / MPIA Garching

Page 5: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Growth rate of density perturbationsProbing the nature of cosmic acceleration

Huterer et al., Astropart.Phys. 63 (2015)

Page 6: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Growth rate of density perturbationsMeasuring the growth rate with redshift-space distortions

Peacock et al., Nature 410 (2001)Guzzo et al., Nature 451 (2008)

Page 7: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Outline

1 Motivation

2 Methodology and dataPeculiar velocities from luminosity variationsMLE and quadratic approximation

3 Application to SDSS

4 Conclusions

Page 8: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Peculiar velocities from LF variationsBasic concepts

• Peculiar motion introduces systematic variations in the observed luminositydistribution of galaxies (Nusser et al. 2011; Tammann et al. 1979)

M = Mobs + 5 log10DL(zobs)

DL(z)

• Linear theory (c = 1):

zobs − z1 + zobs

= V(t, r) − Φ(t, r) − ISW ≈ V(t, r)

• Maximize probability of observing galaxies given their magnitudes and redshifts:

log Ptot =∑

i

log Pi(Mi |zi,Vi) =∑

i

φ(Mi)∫ biaiφ(M)dM

, where

a/b = max /min[Mmin/max,m+/− − DM(z) − K(zobs) + Q(zobs)

]• Velocity models:

V(t, r)→ V (ξi) , V(t, r)→ V(β = f /b)

Page 9: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Peculiar velocities from LF variationsBasic concepts

Vi = 0φ(M

)

M

Page 10: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Peculiar velocities from LF variationsBasic concepts

Vi 6= 0φ(M

)

M

Page 11: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Peculiar velocities from LF variationsBasic concepts

• Method independent of galaxy bias and traditional distance indicators

• For N 1, Ptot is well approximated by a Gaussian:

log Ptot(d|x) ≈ −12

(x − x0)T Σ−1(x − x0) + const, where xT =(q j, ξk

)• Build quadratic estimator to determine Ptot:

log Pi ≈ log Pi |x=x0 +∑α

∂ log Pi

∂xα

∣∣∣∣∣x=x0

xα +∑α,β

∂2 log Pi

∂xα∂xβ

∣∣∣∣∣∣x=x0

xαxβ

• Tedious and may result in complex expressions, e.g. for a Schechter LF:

φ(M) = 0.4 log (10)φ?100.4(1+α?)(M?−M) exp(−100.4(M?−M)

)

Page 12: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Outline

1 Motivation

2 Methodology and data

3 Application to SDSSSDSS DR7 dataProof of concept: constraints on σ8Linear velocity reconstruction and growth constraints at z ∼ 1

4 Conclusions

Page 13: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

SDSS Data Release 7NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

• Use r-band magnitudes (Petrosian)

• 14.5 < mr < 17.6

• −22.5 < Mobs < −17.0

• 0.02 < z < 0.22

• N ∼ 5 × 105

• Adopt pre-Planck cosmological parameters(Calabrese et al. 2013)

• Realistic mocks for testing

→ SDSS footprint→ photometric offsets between stripes→ overall tilt over the sky

Page 14: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

LF estimators“Non-parametric” spline-estimator of φ(M)

0.4

0.2

0.1r-band

α⋆ =−1.10±0.03

M⋆−5log10 h=−20.52±0.04

Q0 = 1.60±0.11

-18-19 -17

0.001

0.01

0.1

1

-20 -19 -18 -17

φ[(Mpc/h)−

3]

Mr−5log10h

-23 -22 -21

Feix et al., JCAP 09 (2014) — arXiv:1405.6710

• Normalization unimportant for our analysis

• Two-parameter Schechter function doesquite well

• To reduce errors, adopt more flexible formfor φ(M)

• Model φ(M) as a spline with samplingpoints φ j(M) for M j < M < M j+1

• Advantage: smoothness, nice analyticproperties for integrals / derivatives)

• Parameterize luminosity evolution:

e(z) = Q0(z − z0) + O(z2

)

Page 15: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Proof of conceptRedshift-binned velocity model

• Expand binned velocity field in SHs:

V(t, r)→ V(r), V(r) =∑l,m

almYlm(r), 0.02 < z1 < 0.07 < z2 < 0.22

• Determine Ptot with quadratic estimator

• Marginalize over LF parameters and construct posterior for Cl =⟨|alm |

2⟩

by applyingBayes’ theorem:

P (Cl) ∝∫

P (d|alm) P (alm|Cl) dalm

• Assume alm as normally distributed

• For a ΛCDM model prior, Cl = Cl (ck):

Cl =2π

∫dkk2PΦ(k)

∣∣∣∣∣∣∫

drW(r)(

l jlr− k jl+1

)∣∣∣∣∣∣2

Page 16: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Constraints on σ8Results from SDSS data analysis (lmax = 5 in two redshift bins)

σ8 = 1.61±0.38

σ8 = 1.52±0.37

σ8 = 1.55±0.40

σ8 = 1.08±0.53

σ8 = 1.01±0.45

σ8 = 1.06±0.51

both bins low-z bin only

0 0.5 1 1.5 2

0

1

2

3

4

5

0 0.5 1 1.5 2

∆χ2

σ8 σ8

Feix et al., JCAP 09 (2014) — arXiv:1405.6710

σ8 ≈ 1.1 ± 0.4 σ8 ≈ 1.0 ± 0.5

Page 17: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

SDSS Data Release 7NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

• Use r-band magnitudes (Petrosian)

• 14.5 < mr < 17.6

• −22.5 < Mobs < −17.0

• 0.02 < z < 0.22→ 0.06 < z < 0.12

• N ∼ 5 × 105 → 2 × 105

• Adopt pre-Planck cosmological parameters(Calabrese et al. 2013)

• Realistic mocks for testing

→ SDSS footprint→ photometric offsets between stripes→ overall tilt over the sky

Page 18: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Building the velocity field of SDSS galaxiesLinear velocity reconstruction (Nusser & Davis 1994; Nusser et al. 2012)

• Assume β = f /b = const over sample range

• Smooth redshift-space density field on a scale Rs ∼ 10h−1 Mpc

• Problem in “spherical harmonics” space:

1s2

dds

(s2 dΦlm

ds

)−

11 + β

l(l + 1)Φlm

s2 =β

1 + β

glm −

d log Sds

dΦlm

ds

)• Boundary conditions: set δ = 0 outside data volume (zero-padding)

• Must exclude monopole and dipole terms

• Models robust w.r.t. small-scale issues, e.g. details of galaxy bias

• Assign galaxy velocities for discrete β-values→ likelihood analysis

Page 19: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Constraints on fσ8 at z ∼ 0.1Results for SDSS mock catalogs (lmax = 150)

0 10 20 30 40 50 60

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

λ [deg]

cosη ∆M

0.03

0.04

Feix et al., PRL 115, 011301 (2015) — arXiv:1503.05945

f σ8 = 0.49±0.22(l > 5)

f σ8 = 0.48±0.19(l > 1)

0

5

20

25

0.4 0.8 1.20

10

15

f σ8

Nm

ock

Page 20: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Constraints on fσ8 at z ∼ 0.1Results from SDSS data analysis (lmax = 150)

f σ8 = 0.37±0.13 (l > 1)

f σ8 = 0.56±0.25 (l > 5)

0

1

2

3

4

0.4 0.6 0.8

5

0.2

∆χ2

f σ8

Feix et al., PRL 115, 011301 (2015) — arXiv:1503.05945

2MRS/SFI++2MRS

This work6dFGS

SDSS MGS2dFGRSWiggleZSDSS LRG

0.5

0.7

0.6

0.4

0.3

0.2

0 0.05 0.1 0.2 0.250.15

fσ8

z

Page 21: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Outline

1 Motivation

2 Methodology and data

3 Application to SDSS

4 Conclusions

Page 22: The flickering luminosity methodhome.kias.re.kr/MKG/upload/2016SSG/06_mfeix.pdfThe Universe in a nutshell The CDM cosmological model Planck’s cosmic recipe Image credit: ESA and

Motivation Methodology and data Application to SDSS Conclusions

Conclusions

• ML estimators extracting the large-scale velocity field through spatial modulations inthe observed LF of galaxies offer a powerful and complementary alternative tocurrently used methods

• New growth measurements are in agreement with the results from Planck

• Luminosity-based constraints on the growth rate at z ∼ 0.1 are both compatible andconsistent with those coming from RSD analyses of similar datasets

• Consistency is striking in view of the different possible systematic biases associatedwith the different methods

• Luminosity-based techniques are less sensitive to nonlinear corrections than thetwo-point statistics which enter the analysis of RSDs