Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk...

24
Neutrino and Dark Radiation Bounds from Cosmology Graziano Rossi Department of Physics and Astronomy Sejong University – Seoul, Korea with N. Palanque-Delabrouille, C. Yèche, J. Lesgourgues 7th KIAS Workshop on Cosmology and Structure Formation KIAS, Seoul, November 3, 2016 G. Rossi

Transcript of Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk...

Page 1: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

Neutrino and Dark Radiation Bounds

from Cosmology

Graziano Rossi

Department of Physics and Astronomy

Sejong University – Seoul, Korea

with N. Palanque-Delabrouille, C. Yèche, J. Lesgourgues

7th KIAS Workshop on Cosmology and Structure FormationKIAS, Seoul, November 3, 2016

G. Rossi

Page 2: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

MAJOR RESULTS

INDIVIDUAL CONSTRAINTS ON∑

mν (95% CL)∑

mν < 0.12 eV → CMB + Lyman-α + BAO

JOINT CONSTRAINTS ON Neff AND∑

mν (95% CL)

Neff = 2.88+0.20−0.20 &

mν < 0.14 eV → CMB + Lyman-α + BAO

BOUNDS ON PURE DARK MATTER PARTICLES (95% CL)

mX & 4.35 keV & ms & 31.7 keV

1. Results on∑

mν tend to favor the normal hierarchy scenario for the

masses of the active neutrino species → strongest upper bound

2. Sterile neutrino thermalized with active neutrinos ruled out at more than

5σ and Neff = 0 rejected at more than 14σ → robust evidence for the

CNB from Neff ∼ 3

G. Rossi

Page 3: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

OUTLINE

1. Introduction• Neutrino Science

2. Cosmology with Massive Neutrinos• Simulations and Datasets

• Neutrino Mass Constraints• Dark Radiation Constraints

3. Synergies & Prospects• Synergies with Particle Physics

• Future Prospects

MAIN REFERENCES

- Baur et al. (2016), JCAP, 8, 012

- Rossi et al. (2015), PRD, 92, 063505

- Palanque-Delabrouille et al. (2015a), JCAP, 11, 011

- Palanque-Delabrouille et al. (2015b), JCAP, 2, 045

- Rossi et al. (2014), A&A, 567, A79

G. Rossi

Page 4: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINO SCIENCE

NEUTRINOS: FORMALISM

να (α = e, µ, τ ) → neutrino flavor eigenstates

νi (i = 1, 2, 3) → neutrino mass eigenstates

mi (i = 1, 2, 3) → neutrino individual masses

m2 > m1, m2 ≃ m1

∆m221 ≡ δm2 = m2

2 − m21 > 0 → solar mass splitting

|∆m231| ≡ |∆m2| = |m2

3 − m21| → atmospheric mass splitting

∆m231 > 0 → normal hierarchy (NH)

∆m231 < 0 → inverted hierarchy (IH)

Relation flavor-mass eigenstates →

|να >=∑

i

Uαi |νi >

Uαi → mixing matrix, elements parameterized by (θ12, θ23, θ13, δ, α1, α2)

G. Rossi

Page 5: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINO SCIENCE

MASSIVE NEUTRINOS: WHY SHOULD WE CARE?

Solar, atmospheric → cannot obtain absolute mass scale of neutrinos

Fixing absolute mass scale of neutrinos → main target of terrestrial

experiments

Oscillation experiments → tight lower bounds on total neutrino mass

(∑

mν > 0.05 eV)

Cosmology → more competitive upper bounds on total neutrino mass

(∑

mν < 0.15 eV)

Neutrino mass scale important for Standard Model → leptogenesis,

baryogenesis, right-handed neutrino sector + cosmological implications

G. Rossi

Page 6: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINO SCIENCE

ABSOLUTE NEUTRINO MASS

PROBING THE NEUTRINO MASS SCALE

1. Direct measurements through β decay kinematics

2. Neutrinoless double β decay (0ν2β)

3. Cosmological observations

1 Direct β decay → squared effective electron neutrino mass

m2β =

i

|Uei|2m2i

2 Neutrinoless double β decay (0ν2β) → effective Majorana mass

mββ = |∑

i

U2eimi|, Φ2 = α1,Φ3 = α2 − 2δ

3 Cosmological observations → total neutrino mass

Mν =∑

i

mi = m1 + m2 + m3

G. Rossi

Page 7: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINO SCIENCE

NEUTRINO MASS HIERARCHY, CNB & Neff

Neutrino mass hierarchy?

CNB, Neff, STERILE ν

• CNB generic prediction of HBB model → relic sea of neutrinos

• 3 active relativistic relic neutrinos in standard model

• Sterile neutrinos? Number of effective neutrino species (Neff)?

G. Rossi

Page 8: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

EFFECTS OF NEUTRINO MASSES ON COSMOLOGY

COSMOLOGICAL EFFECTS

• Fix expansion rate at BBN

• Change background evolution → PS effects

• Slow down growth of structures

NEUTRINO FREE-STREAMING

• After thermal decoupling → ν collisionless fluid

• Minimum free-steaming wavenumber knr

OBSERVABLES AND TECHNIQUES

• CMB anisotropies → PS, lensing

• LSS probes

– Galaxy PS– Cluster mass function– Galaxy weak lensing– Ly-α forest– 21-cm surveys

Rossi et al. (2014)

Linear matter power spectra (ratios) with 3degenerate species of massive neutrinos

G. Rossi

Page 9: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

GENERAL STRATEGY

SIMULATION GRID

massive neutrinos, cosmology, astrophysics

⇓Extract LyA flux power spectra

⇓Taylor expansion of flux around best guess

⇓Construct multidimensional likelihood L

(also with nuisance parameters + COSMOLOGICAL DATA)

⇓Multidimensional likelihood analysis

ւ ցBayesian approach Frequentist approach

⇓Cosmological parameters, Neutrino mass, Neff

G. Rossi

Page 10: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

SIMULATIONS WITH MASSIVE NEUTRINOS

A suite of 48 hydrodynamical simulations with massive neutrinos

Typical set (3 sims.) → (a) 100 h−1Mpc/

7683, (b) 25 h−1Mpc/

7683, (c) 25 h−1Mpc/

1923

With splicing technique → equivalent of 100 h−1Mpc/

30723

2 groups. Full snapshots at a given redshift (z = 4.6 − 2.2, ∆z = 0.2)

100,000 quasar sightlines per redshift interval per simulation

x[Mpc/h]

y[M

pc/

h]

0 10 200

10

20

-8 -7 -6 -5log density

z =0Mν=0.4 eV

x[Mpc/h]

y[M

pc/

h]

0 10 200

10

20

-7.5 -7 -6.5 -6 -5.5log density

z =0Mν=0.4 eV

x[Mpc/h]

y[M

pc/

h]

0 10 200

10

20

-8.5 -8.4 -8.3 -8.2log density

z =0Mν=0.4 eV

Rossi et al. (2014)

G. Rossi

Page 11: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

POWER SPECTRUM STATISTICS

Rossi et al. (2014, 2015), Rossi (2015)

RELEVANT SCALES FOR ν

1 Scales where PS suppression is maximized(BOSS Lyα) ↑

2 Scales where PS suppression is maximized(general) →

G. Rossi

Page 12: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

LYα LIKELIHOOD CONSTRUCTION

Model M defined by three categories of parameters – cosmological

(α), astrophysical (β), nuisance (γ) – globally indicated with

Θ = (α,β,γ)

Nk × Nz dataset X of power spectra P(ki, zj) measured in Nk bins in k

and Nz bins in redshift with experimental Gaussian errors σi,j, with

σ = {σi,j}, i = 1,Nk and j = 1,Nz

LLyα(X ,σ|Θ) =exp[−(∆TC−1∆)/2]

(2π)NkNz

2

|C|LLyα

prior(γ)

∆ is a Nk × Nz matrix with elements ∆(ki, zj) = P(ki, zj)− P th(ki, zj)

P th(ki, zj) predicted theoretical value of the power spectrum for the bin

ki and redshift zj given the parameters (α,β) and computed from

simulations

C is the sum of the data and simulation covariance matrices

LLyαprior(γ) accounts for the nuisance parameters, a subset of the

parameters Θ

G. Rossi

Page 13: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

DATASETS

• 1D Lyα forest flux power spectrum from DR9 BOSS quasar data

• BAO scale in the clustering of galaxies from the BOSS DR11

• Planck (2013) temperature data from March 2013 public release (both

high and low-ℓ)

• Planck (2015) temperature data from January 2015 public release

(TT+TE+EE+lowP)

• High-ℓ public likelihoods from the Atacama Cosmology Telescope (ACT)

and South Pole Telescope (SPT)

• Some low-ℓ WMAP polarization data

Palanque-Delabrouille et al. (2013)

-1k (km/ s)

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

πP

(k)*

k/

-210

-110

z= 2.2

z= 2.4

z= 2.6

z= 2.8

z= 3.0

z= 3.2

z= 3.4

z= 3.6

z= 3.8

z= 4.0

z= 4.2

z= 4.4

Fourier Transform

-1k (km/ s)

-210

πP

(k)*

k/

-210

-110

z= 2.2

z= 2.4

z= 2.6

z= 2.8

z= 3.0

z= 3.2

z= 3.4

z= 3.6

G. Rossi

Page 14: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

ANALYSIS TECHNIQUES

ANALYSIS STRATEGIES

Bayesian Approach

Frequentist Approach

FREQUENTIST APPROACH: INSIGHTS

Minimize χ2(X ,σ|Θ) = −2 ln[L(X ,σ|Θ)]

Compute the global minimum χ20, leaving all the N cosmological

parameters free

Set confidence levels (CL) on a chosen parameter αi by performing the

minimization for a series of fixed values of αi – thus with N − 1 degrees

of freedom

Difference between χ20 and the new minimum allows us to compute the

CL on αi

G. Rossi

Page 15: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

BOSS APPLICATIONS → LYA ALONE

Palanque-Delabrouille et al. (2015a)

✽s

✵�✁✂ ✵�✁✄ ✵�✄ ✵�✄☎ ✵�✄✆ ✵�✄✂ ✵�✄✄ ✵�✝ ✵�✝☎

✞✥

✵�✄✝

✵�✝

✵�✝✟

✵�✝☎

✵�✝✠

✵�✝✆

✵�✝✡

✵�✝✂

☛☞ ✌❛✍✎✏

☛☞ ✑☛☞ ✌❛✍✎✏

✽s✵�✁✂ ✵�✁✄ ✵�✄ ✵�✄☎ ✵�✄✆ ✵�✄✂ ✵�✄✄ ✵�✝ ✵�✝☎

♥✥❙

✵�☎

✵�✆

✵�✂

✵�✄

✶�☎

✶�✆ ✞✟ ✠❛✡☛☞

✞✟ ✌✞✟ ✠❛✡☛☞

G. Rossi

Page 16: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

BOSS APPLICATIONS → COMBINATIONS

Palanque-Delabrouille et al. (2015a)

✽s

✵�✁✁ ✵�✂ ✵�✂✁ ✵�✄ ✵�✄✁ ✵�☎ ✵�☎✁ ✵�✆

✵�✆

✵�✆✞

✵�✆✟

✵�✆✠

✵�✆✡

✵�✆✁

✵�✆✂

✵�✆✄

✵�✆☎

✥☛☞✌✍ ✎ ☞✏✑ ✎✒✌✑

✓✎ ✔❛✕✖✗

✎ ✥☛☞✌✍ ✎ ☞✏✑ ✎ ✒✌✑❛✕✖✗

✽s✵�✁ ✵�✁✁ ✵�✂ ✵�✂✁ ✵�✄ ✵�✄✁ ✵�☎ ✵�☎✁ ✵�✆

✵�✝

✵�✞

✵�✂

✵�☎

✶�✝

✶�✞

✶�✂

✶�☎

✥✟✠✡☛ ☞ ✠✌✍ ☞ ✎✡✍

✏☞ ✑❛✒✓✔

☞ ✥✟✠✡☛ ☞ ✠✌✍ ☞ ✎✡✍❛✒✓✔

Key is orthogonality of LyA forest with other LSS probes∑

mν < 0.14 eV → CMB + Lyman-α + BAO

G. Rossi

Page 17: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

COMBINATIONS WITH BAYESIAN TECHNIQUES

Palanque-Delabrouille et al. (2015a)

G. Rossi

Page 18: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

THE POWER OF COMBINING PROBES

Palanque-Delabrouille et al. (2015b)

mν < 0.12 eV → CMB + Lyman-α + BAO

G. Rossi

Page 19: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

TRICK → ANALYTIC PROXY FOR LYα LIKELIHOOD

• Technique of Palanque-Delabrouille et al. (2015) extended with analytic

proxy for dark radiation models in Lyα likelihood

Trick → If two models have same linear matter PS → nearly identical

NL matter and flux PS

• Simulations with non-standard Neff to confirm analytic proxy

Rossi et al. (2015)

x[Mpc/h]

y[M

pc/

h]

0 10 200

10

20

-8 -7 -6 -5log column density

z =0

M✁=0.34 eV

GAS

Neff=4.046

G. Rossi

Page 20: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

NEUTRINOS & COSMOLOGY

FINAL JOINT CONSTRAINTS

ν mΣ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

eff

N

2.5

3

3.5

4

4.5

CMB

α CMB + Ly-

+ BAO α CMB + Ly-

✽s✵�✁ ✵�✁✁ ✵�✂ ✵�✂✁ ✵�✄ ✵�✄✁ ✵�☎ ✵�☎✁ ✵�✆

✵�✝

✵�✞

✵�✂

✵�☎

✶�✝

✶�✞

✶�✂

✶�☎

✥✟✠✡☛ ☞ ✠✌✍ ☞ ✎✡✍

✏☞ ✑❛✒✓✔

☞ ✥✟✠✡☛ ☞ ✠✌✍ ☞ ✎✡✍❛✒✓✔

Rossi et al. (2015)

Neff = 2.91+0.21−0.22 and

mν < 0.15 eV (all at 95% CL) →CMB + Lyman-α

Neff = 2.88+0.20−0.20 and

mν < 0.14 eV (all at 95% CL) →G. Rossi

Page 21: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

SYNERGIES & PROSPECTS

IMPLICATIONS FOR PARTICLE PHYSICS

Palanque-Delabrouille et al. (2015a)

✥�✁✂♥✄❙✵☎✵✆ ✵☎✝ ✵☎✝✆ ✵☎✞ ✵☎✞✆ ✵☎✟ ✵☎✟✆ ✵☎✠ ✵☎✠✆ ✵☎✆

✡☛☞✌

❜✍

✵☎✵✞

✵☎✵✠

✵☎✵✎

✵☎✵✏

✵☎✝

✵☎✝✞

✵☎✝✠

✵☎✝✎

✵☎✝✏

✑✒✓✔✕✖✔✗ ✘✙✔✕✚✕✛✜✢

✣✤✕✦✚✧ ✘✙✔✕✚✕✛✜✢

★✤✩✦✤✧✤✪✙✛✚✧ ✒✔✫✖✕✙✒✤✩ ✬✤✫✒✗

mν < 0.15 eV → mβ < 0.04 eV → If KATRIN detects mβ > 0.2 eV the

3-neutrino model is in trouble!

G. Rossi

Page 22: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

SYNERGIES & PROSPECTS

MORE IMPLICATIONS

Potential relevance of our neutrino bounds on neutrinoless double beta

decay (see Dell’Oro et al. 2015)

Crucial impact, because the possibility of detecting a signal will be out

of the reach of the next generation of experiments

NH

m1 = m (lightest neutrino mass)

m2 =√

m2 + δm2

m3 =√

m2 +∆m2 + δm2/2

IH

m1 =√

m2 +∆m2 − δm2/2

m2 =√

m2 +∆m2 + δm2/2

m3 = m (lightest neutrino mass)

Dell’Oro et al. (2015)

G. Rossi

Page 23: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

SYNERGIES & PROSPECTS

SDSS DR12 & NEUTRINOS

SDSS DR12 ‘CONSENSUS PAPER’

Alam et al. (2016) → ∑

mν ≤ 0.16 eV (95%)

SDSS DR12 ‘SUPPORTING PAPERS’

Pellejero-Ibanez et al. (2016) → ∑

mν ≤ 0.22 eV (95%) with

‘double-probe’ method

FUTURE CONSTRAINTS

eBOSS → Zhao et al. (2016) forecasts → σ(∑

)

= 0.03 eV (68%)

with combination of probes

G. Rossi

Page 24: Neutrino and Dark Radiation Bounds from Cosmologyhome.kias.re.kr/MKG/upload/cosmology2016/talk file...PROBING THE NEUTRINO MASS SCALE 1. Direct measurements through β decay kinematics

SYNERGIES & PROSPECTS

FUTURE SURVEYS: DESI

DESI Collaboration I (arXiv:1611.00036)

DESI

• Dark Energy Spectroscopic Instrument

• Massively multiplexed fiber-fed spectrograph

• On the Mayall telescope, USA

• Spectra and redshifts for 18 million ELGs, 4million LRGs, 3 million QSOs

• Probes the effects of dark energy on theexpansion history

• Targets: BAO, RSD, neutrino masses, modifiedgravity, inflation

• 1% level measurements of the distance scale in35 redshift bins

DESI will measure the sum of neutrino masses with an uncertainty of 0.020 eV (for kmax < 0.2 h Mpc−1), sufficientto make the first direct detection of the sum of the neutrino masses at 3σ significance and rule out the the inverted

mass hierarchy at 99% CL, if the hierarchy is normal and the masses are minimal

G. Rossi