Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK)...

11
Geochimica et Cosmochimica Acta Appendix for δ 13 C values of bacterial hopanoids and leaf waxes as tracers for methanotrophy in peatlands Gordon N. Inglis a * , B. David A. Naafs a , Yanhong Zheng b , Judith Schellekens c , Richard D. Pancost a and the ‘ T-GRES Peat Database collaborators’ a Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, and Cabot Institute, University of Bristol, Bristol, UK b State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, PR China c Department of Soil Science, University of São Paulo, Piracicaba, Brazil Corresponding author: Gordon N. Inglis Email: [email protected] 1

Transcript of Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK)...

Page 1: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

Geochimica et Cosmochimica Acta

Appendix for

δ13C values of bacterial hopanoids and leaf waxes as tracers for methanotrophy in peatlands

Gordon N. Inglis a *, B. David A. Naafsa, Yanhong Zhengb, Judith Schellekensc, Richard D. Pancosta and the ‘T-GRES Peat Database collaborators’

a Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, and Cabot Institute, University of Bristol, Bristol, UK

b State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, PR China

c Department of Soil Science, University of São Paulo, Piracicaba, Brazil

Corresponding author: Gordon N. InglisEmail: [email protected]

Introduction

1

Page 2: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

The following supplementary information includes additional figures (Figure S1-S6) and datasets.

Dataset S1, which is uploaded separately, contains 5 sheets:

Sheet 1: Site information. This includes location, latitude, longitude, altitude and key vegetation.

Sheet 2: Compound specific carbon isotope data from recent peatland database (< 2kyr)

Sheet 3: Compound specific carbon isotope data from middle and early Holocene and late Glacial (4 to 18 kyr)

Sheet 4: Compound specific carbon isotope data from early Eocene and latest Paleocene (48 to 56 Myr)

Sheet 5: Correlation matrix for different lipid biomarkers in the recent peatland database

Figure S1: Downcore δ13C values within a tropical, woody angiosperm-dominated peatland (Indonesia; a-d) and temperate, woody angiosperm-

2

Page 3: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

dominated peatland (Spain; e-g).

Figure S2: Downcore δ13C values within a high-latitude, sedge-dominated peatland (China; a-c) and mid-latitude, Sphagnum-dominated peatland (Germany; d-f).

3

Page 4: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

Figure S3: Offset between C31 hopane δ13C values and long-chain n-alkane δ13C values in our ‘recent’ peatland dataset.

4

Page 5: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

Figure S4: Hopanoid distributions (a-d; Talbot et al., 2016) and carbon isotopic composition (e-f; this study) within Bissendorfer Moor (Germany). (a) BHT (μg/g TOC), (b) aminotriol (μg/g TOC), (c) aminotetrol (μg/g TOC), (d) aminopentol

5

Page 6: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

(μg/g TOC), e) C31 αβ hopane (open circles) and C31 ββ hopane (closed circle) hopane (‰) and f) C30 hopene (‰).

6

Page 7: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

Figure S5: δ13C value of ≤C30 hopanoids (a-c) and C31 hopanoids (d-f) versus different environmental parameters. Solid lines represent the Deming regression.

7

Page 8: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

Figure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C bulk OM (Pancost et al., 2007), b) C29 ββ and C31 ββ hopane (Pancost et al., 2007), c) brGDGT-derived pH (CBT’) (this study). Dashed lines (and grey box) represent the PETM onset (Pancost et al., 2007)

8

Page 9: Supporting Online Material for · Web viewFigure S6: Biogeochemical change in Cobham lignite (UK) during the Paleocene-Eocene Thermal Maximum (ca. 56 million years ago): a) δ13C

References:

Pancost, R.D., Steart, D.S., Handley, L., Collinson, M.E., Hooker, J.J., Scott, A.C., Grassineau, N.V. and Glasspool, I.J. (2007) Increased terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. Nature 449, 332-335.

Talbot, H.M., McClymont, E.L., Inglis, G.N., Evershed, R.P. and Pancost, R.D. (2016) Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany). Organic Geochemistry 97, 95-110.

9