Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... ·...

20
www.sciencemag.org/content/355/6320/49/suppl/DC1 Supplementary Materials for Density functional theory is straying from the path toward the exact functional Michael G. Medvedev,*† Ivan S. Bushmarinov,*† Jianwei Sun, John P. Perdew,† Konstantin A. Lyssenko† *Corresponding author. Email: [email protected] (M.G.M.); [email protected] (I.S.B.) †These authors contributed equally to this work. Published 6 January 2017, Science 355, 49 (2017) DOI: 10.1126/science.aah5975 This PDF file includes: Materials and Methods Figs. S1 to S5 Table S1 Captions for data S1 to S4 References (30–96) Other supplementary material for this manuscript includes the following: Data S1 to S4 (Excel format)

Transcript of Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... ·...

Page 1: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

www.sciencemag.org/content/355/6320/49/suppl/DC1

Supplementary Materials for

Density functional theory is straying from the path toward the exact

functional

Michael G. Medvedev,*† Ivan S. Bushmarinov,*† Jianwei Sun, John P. Perdew,† Konstantin A. Lyssenko†

*Corresponding author. Email: [email protected] (M.G.M.); [email protected] (I.S.B.) †These authors contributed equally to this work.

Published 6 January 2017, Science 355, 49 (2017)

DOI: 10.1126/science.aah5975

This PDF file includes: Materials and Methods

Figs. S1 to S5

Table S1

Captions for data S1 to S4

References (30–96)

Other supplementary material for this manuscript includes the following:

Data S1 to S4 (Excel format)

Page 2: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

2

Materials and Methods:

Calculations CCSD-full, MP4(sdq)-full, MP3-full, B3LYP*, revB3LYP, B97-1, B97-2, MN12-L,

MN12-SX, N12, N12-SX, mPW1PW91, mPW1LYP, mPWPBE, mPW1PBE, mPW3PBE, B1B95, Xα, HISS, APFD, BC, TPSSLYP1W, PBEh1PBE, PBELYP1W, PBE1KCIS, MPWLYP1W, HSE06 and O3LYP calculations were performed using Gaussian09 (16). SCAN, MS0, MS1, MS2, MVS calculations were performed using modified Gaussian03 (30). All other calculations were performed using GAMESS-US (17) on the IBM BlueGene/P supercomputer at Moscow State University’s Faculty of Computational Mathematics and Cybernetics. Big grids were used in both cases: “JANS=2” in GAMESS-US and “integral=ultrafine” in Gaussian. Analysis

Conversion of wfn files into RDF tables (50000 radial points, range: 0-10 Å) was done by Multiwfn (29) on the Lomonosov supercomputer of the Supercomputing Center of Lomonosov Moscow State University (28). Subsequent analysis was done using python and R (31). All descriptors are used as implemented in Multiwfn, and their definitions, along with definitions of RMSD and normalized errors, may be found below. Median errors in RMSDs that were used to calculate normalized errors are 0.009909618 for RHO, 0.091951402 for GRD, and 1.433784114 for LR. Sensitivity of the results to the exclusion of certain atoms:

The Ne and Ne+6 atoms demonstrate the highest errors in our study and therefore have the largest impact on the ordering of the functionals in Tables 1 and 2. The exclusion of Ne, Ne+6 and Ne+8 from consideration replaces PBE1KCIS, B97-2, B1B95, TPSSh, TPSSm, SCAN and B3LYP with revB3LYP, TPSSLYP1W, revTPSS and HCTH407 in L1, but does not remove any functional except Xα from L2. L2 is expanded with PW91VWN, PW91PZ81, BVWN, BPZ81, BVWN1RPA, ωB97, B97-K, M05-2X, BMK. Thus, HCTH407 appears to be the only GGA competing with mGGAs and hGGAs.

All conclusions of the manuscript hold up on this truncated dataset. Some additional highly empirical and LDA-correlation-based functionals are added to the upper half of L2, replacing the “best of the worst” Xα. The lower half of L1 (with Max NE > 1.95) is reordered, which is unsurprising given the close competition between the best functionals. Notably we can see that the performance of L2 functionals is not a result of some catastrophic failure in the description of Ne atom and ions. Correlation of the functional accuracy with the Jacob’s Ladder rung

If we denote the rungs of the Jacob’s Ladder by integers (1 for LDA, 2 for GGA, 3 for meta-GGA, and 4 for hybrid) as defined in (19), with ab initio methods excluded, the correlation coefficient of “Max NE” with “Rung” is -0.47 in L1 and +0.44 in L2.

Page 3: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

3

Definitions

��� = ����� = 4 � × � ���Ȃ ���� ��� = 4 � × � �� �� ��,����� ��

�,

where ηi is the occupation number of orbital i, ϕ is an orbital wavefunction, χ is a basis function. C is the coefficient matrix: The element of the i-th row and j-th column corresponds to the expansion coefficient of orbital j with respect to basis function i.

��� = ���∇��� = 4 � × !"��"# $� + !"��"& $� + !"��"' $�

(� = ��)���� = 4 � × !"���"#� + "���"&� + "���"'� $

For a property P, atom a, and method f:

�*+�,,-,. = Ȃ /,0,1�234,0,5567�2389:3;< = , where N is the number of radial points.

The errors for different properties are on different scales, so to put them on the same one, we normalize them by the median error for a given property:

*>?@,,-,. = �*+�,,-,.median, �*+�,,-,. In the Additional Data table S1, we list for every functional its maximal median-

normalized error, defined as follows: HI#*>?@,,. = max- *>?@,,-,.

In the Additional Data table S2, we list for every functional its mean median-normalized error, defined as follows: HKIL*>?@,,. = mean- *>?@,,-,.

Page 4: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

4

Studied functionals 1. LDAs: SLATER (32), SVWN (33), SVWN1RPA (33), SPZ81 (34), Xα (35); 2. GGAs: BECKE (36), BLYP (37), BOP, BP86, BPBE, BPW91, BPZ81, BVWN,

BVWN1RPA, EDF1 (38), GILL (39), GLYP, GOP, GP86, GPBE, GPW91, GPZ81, GVWN, GVWN1RPA, HCTH407 (8), MOHLYP (40), MPWLYP1W (41), mPWPBE, N12 (42), OLYP, OP86, OPBE (43), OPTX (44), OPW91, OPZ81, OVWN, OVWN1RPA, PBE (45), PBELYP, PBELYP1W (41), PBEOP, PBEP86, PBEPW91, PBEPZ81, PBEsol (46), PBEVWN, PBEX (45), PW91 (47, 48), PW91LYP, PW91P86, PW91PBE, PW91PZ81, PW91VWN, PW91X (47), revPBE (49), RPBE (50), SLYP, SOGGA (51), SOGGA11 (52), SOP, SP86, SPBE, SPW91;

3. mGGAs: BMK (53), M06-L (54), M11-L (55), MN12-L (56), MS0 (57, 58), MS1 (58), MS2 (58), MVS (59), PKZB (60), revTPSS (24), SCAN (5, 18), τHCTH (61), TPSS (23, 62), TPSSLYP1W (41), TPSSm (63);

4. hGGA*s: BC (22), LYP, OP (64), P86 (65), PBEC (45), PW91C (47), PZ81, VWN1RPA, VWN5;

5. hGGAs: APFD (66), B1B95 (22), B3LYP (67), B3LYP* (68), B3LYPV1R (67), B3P86 (21), B3PW91 (21), B97-1 (69), B97-2 (9), B97-3 (70), B97-K (53), B98 (71, 72), BHHLYP (73), CAM-B3LYP (74), HISS (75), HSE06 (76–78), M05 (79), M05-2X (80), M06 (81), M06-2X (81, 82), M06-HF (83), M08-HX (84), M08-SO (84), M11 (85), MN12-SX (86), mPW1LYP (87), mPW1PBE, mPW1PW91 (88), mPW3PBE, N12-SX (86), O3LYP (89), PBE0 (90), PBE1KCIS (91), PBEh1PBE (92), revB3LYP (93), SOGGA11X (94), τHCTHhyb (61), TPSSh (23), ωB97 (95), ωB97X (95), X3LYP (96).

Replacement of VWN5 (which is used as the local correlation in VWN-listed functionals) by VWN3 does not affect the electron density because the RPA correlation energy per electron of a uniform electron gas of a given density (VWN3) is about 0.5 eV lower than the beyond-RPA correlation energy (VWN5), over a wide range of high- or valence-electron densities. Then the VWN3 correlation potential will be lower by a constant compared to the VWN5 one, over most of the density. A constant shift of the correlation potential does not change the density. Thus, B3LYPV3, BVWN3, OVWN3, PBEVWN3, PW91VWN3, SVWN3 and VWN3 were also considered, but excluded from the investigation.

Page 5: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

5

Fig. S1.

Plots of RHO and errors in it for Be (left) and Ne (right).

Page 6: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

6

Fig. S2

Plots of GRD and errors in it for Be (left) and Ne (right).

Page 7: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

7

Fig. S3

Plots of LR and errors in it for Be (left) and Ne (right).

Page 8: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

8

Fig. S4

The historical trends in maximum and averaged over all systems RMSDs for all studied functionals and properties.

Page 9: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

9

Fig. S5

Details of PBE0 analysis. Computed points are connected by linear segments. Dotted lines denote the optimal HF fraction per atom, which minimizes the maximum normalized error.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Hartree�Fock fraction

No

rma

lize

d e

rro

r (M

NA

E)

Descriptor RHO GRD LR

Atom Be0

F+5

Ne+6

Ne0

Page 10: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

10

Table S1.

Source table for the barplot (Figure 2). Average Median-Normalized Absolute Errors (MNAEs) for Energy and Electron Density (ED).

Page 11: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

11

Additional Data table S1 (separate file)

Maximum median-normalized absolute errors. Sorted by Max column. Colored from 10th to 90th percentiles.

Additional Data table S2 (separate file)

Mean median-normalized absolute errors. Sorted by Max column. Colored from 10th to 90th percentiles.

Additional Data table S3 (separate file)

Average median-normalized absolute errors over all descriptors and systems with a given number of electrons. Sorted by Max column. Each column colored separately from 10th to 90th percentiles.

Additional Data table S4 (separate file)

Median-normalized absolute errors for all studied methods, descriptors and systems.

Page 12: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

References

1. R. O. Jones, Density functional theory: Its origins, rise to prominence, and future. Rev. Mod.

Phys. 87, 897–923 (2015). doi:10.1103/RevModPhys.87.897

2. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

doi:10.1103/PhysRev.136.B864

3. M. Levy, Universal variational functionals of electron densities, first-order density matrices,

and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad.

Sci. U.S.A. 76, 6062–6065 (1979). doi:10.1073/pnas.76.12.6062

4. R. Peverati, D. G. Truhlar, Quest for a universal density functional: The accuracy of density

functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans.

R. Soc. A 372, 20120476 (2014). doi:10.1098/rsta.2012.0476

5. J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U.

Waghmare, X. Wu, M. L. Klein, J. P. Perdew, Accurate first-principles structures and

energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8,

831–836 (2016). doi:10.1038/nchem.2535

6. J. Poater, M. Duran, M. Solà, Parametrization of the Becke3-LYP hybrid functional for a

series of small molecules using quantum molecular similarity techniques. J. Comput.

Chem. 22, 1666–1678 (2001). doi:10.1002/jcc.1122

7. G. I. Csonka, N. A. Nguyen, I. Kolossváry, Simple tests for density functional methods. J.

Comput. Chem. 18, 1534–1545 (1997). doi:10.1002/(SICI)1096-

987X(199709)18:12<1534:AID-JCC10>3.0.CO;2-K

8. A. D. Boese, N. C. Handy, A new parametrization of exchange-correlation generalized

gradient approximation functionals. J. Chem. Phys. 114, 5497–5503 (2001).

doi:10.1063/1.1347371

9. P. J. Wilson, T. J. Bradley, D. J. Tozer, Hybrid exchange-correlation functional determined

from thermochemical data and ab initio potentials. J. Chem. Phys. 115, 9233–9242

(2001). doi:10.1063/1.1412605

10. R. J. Boyd, J. Wang, L. A. Eriksson, The electron density as calculated from density

functional theory. Recent Adv. Density Funct. Methods 1, 369–401 (1995).

doi:10.1142/9789812830586_0010

11. V. Polo, E. Kraka, D. Cremer, Some thoughts about the stability and reliability of commonly

used exchange-correlation functionals—coverage of dynamic and nondynamic

correlation effects. Theor. Chem. Acc. 107, 291–303 (2002). doi:10.1007/s00214-002-

0331-4

Page 13: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

12. A. D. Bochevarov, R. A. Friesner, The densities produced by the density functional theory:

Comparison to full configuration interaction. J. Chem. Phys. 128, 034102 (2008).

doi:10.1063/1.2821123

13. A. A. Rykounov, A. I. Stash, V. V. Zhurov, E. A. Zhurova, A. A. Pinkerton, V. G. Tsirelson,

On the transferability of QTAIMC descriptors derived from X-ray diffraction data and

DFT calculations: Substituted hydropyrimidine derivatives. Acta Crystallogr. B 67, 425–

436 (2011). doi:10.1107/S0108768111033015

14. V. Tognetti, L. Joubert, On the influence of density functional approximations on some local

Bader’s atoms-in-molecules properties. J. Phys. Chem. A 115, 5505–5515 (2011).

doi:10.1021/jp2031384

15. I. Grabowski, A. M. Teale, E. Fabiano, S. Śmiga, A. Buksztel, F. D. Sala, A density

difference based analysis of orbital-dependent exchange-correlation functionals. Mol.

Phys. 112, 700–710 (2014). doi:10.1080/00268976.2013.854424

16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.

Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.

P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.

M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski, D. J. Fox, Gaussian 09, Revision D.01.

17. M. S. Gordon, M. W. Schmidt, in Theory and Applications of Computational Chemistry, G.

E. Scuseria, C. E. Dykstra, G. Frenking, K. S. Kim, Eds. (Elsevier, 2005), pp. 1167–

1189.

18. J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and appropriately normed

semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

doi:10.1103/PhysRevLett.115.036402

19. J. P. Perdew, K. Schmidt, in Density Functional Theory and Its Applications to Materials, V.

Van Doren, K. Van Alsenoy, P. Geerlings, Eds. (American Institute of Physics, 2001),

pp. 1–20.

20. K. A. Peterson, T. H. Dunning Jr., Accurate correlation consistent basis sets for molecular

core-valence correlation effects: The second row atoms Al–Ar, and the first row atoms

B–Ne revisited. J. Chem. Phys. 117, 10548 (2002). doi:10.1063/1.1520138

Page 14: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

21. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem.

Phys. 98, 5648 (1993). doi:10.1063/1.464913

22. A. D. Becke, Density‐functional thermochemistry. IV. A new dynamical correlation

functional and implications for exact‐exchange mixing. J. Chem. Phys. 104, 1040–1046

(1996). doi:10.1063/1.470829

23. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Climbing the density functional

ladder: Nonempirical meta–generalized gradient approximation designed for molecules

and solids. Phys. Rev. Lett. 91, 146401 (2003). doi:10.1103/PhysRevLett.91.146401

24. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, J. Sun, Workhorse semilocal

density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett.

103, 026403 (2009). doi:10.1103/PhysRevLett.103.026403

25. M.-C. Kim, E. Sim, K. Burke, Understanding and reducing errors in density functional

calculations. Phys. Rev. Lett. 111, 073003 (2013). doi:10.1103/PhysRevLett.111.073003

26. M. G. Medvedev, I. S. Bushmarinov, K. A. Lyssenko, Z-effect reversal in carboxylic acid

associates. Chem. Commun. 52, 6593–6596 (2016). doi:10.1039/C6CC01305H

27. J. P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density

functional approximations. J. Chem. Phys. 105, 9982–9985 (1996). doi:10.1063/1.472933

28. V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, in Contemporary High

Performance Computing: From Petascale Toward Exascale (CRC Press, 2013), pp. 283–

307.

29. T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33,

580–592 (2012). doi:10.1002/jcc.22885

30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J.

A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.

Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.

B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.

Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.

Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.

Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.

Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M.

W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.02.

31. R Development Core Team, R: A Language and Environment for Statistical Computing (R

Foundation for Statistical Computing, Vienna, 2008).

Page 15: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

32. R. Gáspár, Über eine Approximation des Hartree-Fockschen Potentials Durch eine

Universelle Potentialfunktion. Acta Phys. Acad. Sci. Hung. 3, 263–286 (1954).

doi:10.1007/BF03156228

33. S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–

1211 (1980). doi:10.1139/p80-159

34. J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for

many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

doi:10.1103/PhysRevB.23.5048

35. Á. Nagy, Ab initio exchange-correlation parameter in the Xα method. Int. J. Quantum Chem.

31, 269–278 (1987). doi:10.1002/qua.560310207

36. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic

behavior. Phys. Rev. A 38, 3098–3100 (1988). doi:10.1103/PhysRevA.38.3098

37. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula

into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

doi:10.1103/PhysRevB.37.785

38. R. D. Adamson, P. M. Gill, J. A. Pople, Empirical density functionals. Chem. Phys. Lett. 284,

6–11 (1998). doi:10.1016/S0009-2614(97)01282-7

39. P. M. W. Gill, A new gradient-corrected exchange functional. Mol. Phys. 89, 433–445

(1996). doi:10.1080/002689796173813

40. N. E. Schultz, Y. Zhao, D. G. Truhlar, Density functionals for inorganometallic and

organometallic chemistry. J. Phys. Chem. A 109, 11127–11143 (2005).

doi:10.1021/jp0539223

41. E. E. Dahlke, D. G. Truhlar, Improved density functionals for water. J. Phys. Chem. B 109,

15677–15683 (2005). doi:10.1021/jp052436c

42. R. Peverati, D. G. Truhlar, Exchange-correlation functional with good accuracy for both

structural and energetic properties while depending only on the density and its gradient.

J. Chem. Theory Comput. 8, 2310–2319 (2012). doi:10.1021/ct3002656

43. M. Swart, A. W. Ehlers, K. Lammertsma, Performance of the OPBE exchange correlation

functional. Mol. Phys. 102, 2467–2474 (2004). doi:10.1080/0026897042000275017

44. N. C. Handy, A. J. Cohen, Left-right correlation energy. Mol. Phys. 99, 403–412 (2001).

doi:10.1080/00268970010018431

45. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple.

Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865

Page 16: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

46. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,

X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and

surfaces. Phys. Rev. Lett. 100, 136406 (2008). doi:10.1103/PhysRevLett.100.136406

47. J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron gas

correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

doi:10.1103/PhysRevB.45.13244

48. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C.

Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient

approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

doi:10.1103/PhysRevB.46.6671

49. Y. Zhang, W. Yang, Comment on ―Generalized gradient approximation made simple‖. Phys.

Rev. Lett. 80, 890 (1998). doi:10.1103/PhysRevLett.80.890

50. B. Hammer, L. B. Hansen, J. K. Nørskov, Improved adsorption energetics within density-

functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59,

7413–7421 (1999). doi:10.1103/PhysRevB.59.7413

51. Y. Zhao, D. G. Truhlar, Construction of a generalized gradient approximation by restoring

the density-gradient expansion and enforcing a tight Lieb-Oxford bound. J. Chem. Phys.

128, 184109 (2008). doi:10.1063/1.2912068

52. R. Peverati, Y. Zhao, D. G. Truhlar, Generalized gradient approximation that recovers the

second-order density-gradient expansion with optimized across-the-board performance. J.

Phys. Chem. Lett. 2, 1991–1997 (2011). doi:10.1021/jz200616w

53. A. D. Boese, J. M. L. Martin, Development of density functionals for thermochemical

kinetics. J. Chem. Phys. 121, 3405–3416 (2004). doi:10.1063/1.1774975

54. Y. Zhao, D. G. Truhlar, A new local density functional for main-group thermochemistry,

transition metal bonding, thermochemical kinetics, and noncovalent interactions. J.

Chem. Phys. 125, 194101 (2006). doi:10.1063/1.2370993

55. R. Peverati, D. G. Truhlar, M11-L: A local density functional that provides improved

accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem.

Lett. 3, 117–124 (2012). doi:10.1021/jz201525m

56. R. Peverati, D. G. Truhlar, An improved and broadly accurate local approximation to the

exchange-correlation density functional: The MN12-L functional for electronic structure

calculations in chemistry and physics. Phys. Chem. Chem. Phys. 14, 13171–13174

(2012). doi:10.1039/c2cp42025b

57. J. Sun, B. Xiao, A. Ruzsinszky, Effect of the orbital-overlap dependence in the meta

generalized gradient approximation. J. Chem. Phys. 137, 051101 (2012).

doi:10.1063/1.4742312

Page 17: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

58. J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, J. P. Perdew, Semilocal and

hybrid meta-generalized gradient approximations based on the understanding of the

kinetic-energy-density dependence. J. Chem. Phys. 138, 044113 (2013).

doi:10.1063/1.4789414

59. J. Sun, J. P. Perdew, A. Ruzsinszky, Semilocal density functional obeying a strongly

tightened bound for exchange. Proc. Natl. Acad. Sci. U.S.A. 112, 685–689 (2015).

doi:10.1073/pnas.1423145112

60. J. P. Perdew, S. Kurth, A. Zupan, P. Blaha, Accurate density functional with correct formal

properties: A step beyond the generalized gradient approximation. Phys. Rev. Lett. 82,

2544–2547 (1999). doi:10.1103/PhysRevLett.82.2544

61. A. D. Boese, N. C. Handy, New exchange-correlation density functionals: The role of the

kinetic-energy density. J. Chem. Phys. 116, 9559–9569 (2002). doi:10.1063/1.1476309

62. J. P. Perdew, J. Tao, V. N. Staroverov, G. E. Scuseria, Meta-generalized gradient

approximation: Explanation of a realistic nonempirical density functional. J. Chem. Phys.

120, 6898–6911 (2004). doi:10.1063/1.1665298

63. J. P. Perdew, A. Ruzsinszky, J. Tao, G. I. Csonka, G. E. Scuseria, One-parameter

optimization of a nonempirical meta-generalized-gradient-approximation for the

exchange-correlation energy. Phys. Rev. A 76, 042506 (2007).

doi:10.1103/PhysRevA.76.042506

64. T. Tsuneda, K. Hirao, A new spin-polarized Colle-Salvetti-type correlation energy

functional. Chem. Phys. Lett. 268, 510–520 (1997). doi:10.1016/S0009-2614(97)00201-7

65. J. P. Perdew, Density-functional approximation for the correlation energy of the

inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

doi:10.1103/PhysRevB.33.8822

66. A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, K. Throssell, A density

functional with spherical atom dispersion terms. J. Chem. Theory Comput. 8, 4989–5007

(2012). doi:10.1021/ct300778e

67. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of

vibrational absorption and circular dichroism spectra using density functional force

fields. J. Phys. Chem. 98, 11623–11627 (1994). doi:10.1021/j100096a001

68. M. Reiher, O. Salomon, B. A. Hess, Reparameterization of hybrid functionals based on

energy differences of states of different multiplicity. Theor. Chem. Acc. 107, 48–55

(2001). doi:10.1007/s00214-001-0300-3

69. F. A. Hamprecht, A. J. Cohen, D. J. Tozer, N. C. Handy, Development and assessment of

new exchange-correlation functionals. J. Chem. Phys. 109, 6264–6271 (1998).

doi:10.1063/1.477267

Page 18: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

70. T. W. Keal, D. J. Tozer, Semiempirical hybrid functional with improved performance in an

extensive chemical assessment. J. Chem. Phys. 123, 121103 (2005).

doi:10.1063/1.2061227

71. A. D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-

correlation functionals. J. Chem. Phys. 107, 8554 (1997). doi:10.1063/1.475007

72. H. L. Schmider, A. D. Becke, Optimized density functionals from the extended G2 test set. J.

Chem. Phys. 108, 9624 (1998). doi:10.1063/1.476438

73. A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem.

Phys. 98, 1372–1377 (1993). doi:10.1063/1.464304

74. T. Yanai, D. P. Tew, N. C. Handy, A new hybrid exchange–correlation functional using the

Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

doi:10.1016/j.cplett.2004.06.011

75. T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, A. Savin, Assessment of a middle-range

hybrid functional. J. Chem. Theory Comput. 4, 1254–1262 (2008).

doi:10.1021/ct800149y

76. J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb

potential. J. Chem. Phys. 118, 8207–8215 (2003). doi:10.1063/1.1564060

77. J. Heyd, G. E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment

of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys.

121, 1187–1192 (2004). doi:10.1063/1.1760074

78. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange

screening parameter on the performance of screened hybrid functionals. J. Chem. Phys.

125, 224106 (2006). doi:10.1063/1.2404663

79. Y. Zhao, N. E. Schultz, D. G. Truhlar, Exchange-correlation functional with broad accuracy

for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem.

Phys. 123, 161103 (2005). doi:10.1063/1.2126975

80. Y. Zhao, N. E. Schultz, D. G. Truhlar, Design of density functionals by combining the

method of constraint satisfaction with parametrization for thermochemistry,

thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–

382 (2006). doi:10.1021/ct0502763

81. Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group

thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and

transition elements: Two new functionals and systematic testing of four M06-class

functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2007).

doi:10.1007/s00214-007-0310-x

Page 19: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

82. Y. Zhao, D. G. Truhlar, Density functionals with broad applicability in chemistry. Acc.

Chem. Res. 41, 157–167 (2008). doi:10.1021/ar700111a

83. Y. Zhao, D. G. Truhlar, Density functional for spectroscopy: No long-range self interaction

error, good performance for Rydberg and charge-transfer states, and better performance

on average than B3LYP for ground states. J. Phys. Chem. A 110, 13126–13130 (2006).

doi:10.1021/jp066479k

84. Y. Zhao, D. G. Truhlar, Exploring the limit of accuracy of the global hybrid meta density

functional for main-group thermochemistry, kinetics, and noncovalent interactions. J.

Chem. Theory Comput. 4, 1849–1868 (2008). doi:10.1021/ct800246v

85. R. Peverati, D. G. Truhlar, Improving the accuracy of hybrid meta-GGA density functionals

by range separation. J. Phys. Chem. Lett. 2, 2810–2817 (2011). doi:10.1021/jz201170d

86. R. Peverati, D. G. Truhlar, Screened-exchange density functionals with broad accuracy for

chemistry and solid-state physics. Phys. Chem. Chem. Phys. 14, 16187–16191 (2012).

doi:10.1039/c2cp42576a

87. G. de Oliveira, J. M. L. Martin, F. de Proft, P. Geerlings, Electron affinities of the first- and

second-row atoms: Benchmark ab initio and density-functional calculations. Phys. Rev. A

60, 1034–1045 (1999). doi:10.1103/PhysRevA.60.1034

88. C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and

adiabatic connection methods without adjustable parameters: The mPW and mPW1PW

models. J. Chem. Phys. 108, 664–675 (1998). doi:10.1063/1.475428

89. A. J. Cohen, N. C. Handy, Dynamic correlation. Mol. Phys. 99, 607–615 (2001).

doi:10.1080/00268970010023435

90. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable

parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

doi:10.1063/1.478522

91. Y. Zhao, D. G. Truhlar, Benchmark databases for nonbonded interactions and their use to test

density functional theory. J. Chem. Theory Comput. 1, 415–432 (2005).

doi:10.1021/ct049851d

92. M. Ernzerhof, J. P. Perdew, Generalized gradient approximation to the angle- and system-

averaged exchange hole. J. Chem. Phys. 109, 3313–3320 (1998). doi:10.1063/1.476928

93. L. Lu, H. Hu, H. Hou, B. Wang, An improved B3LYP method in the calculation of organic

thermochemistry and reactivity. Comput. Theor. Chem. 1015, 64–71 (2013).

doi:10.1016/j.comptc.2013.04.009

94. R. Peverati, D. G. Truhlar, A global hybrid generalized gradient approximation to the

exchange-correlation functional that satisfies the second-order density-gradient constraint

Page 20: Supplementary Materials forscience.sciencemag.org/highwire/filestream/688792/field... · 2017-01-04 · 3 Definitions = =4 × Ȃ =4 × ˘ ˇ , ˙ ˘ , where η i is the occupation

and has broad applicability in chemistry. J. Chem. Phys. 135, 191102 (2011).

doi:10.1063/1.3663871

95. J.-D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density

functionals. J. Chem. Phys. 128, 084106 (2008). doi:10.1063/1.2834918

96. X. Xu, Q. S. Zhang, R. P. Muller, W. A. Goddard III, An extended hybrid density functional

(X3LYP) with improved descriptions of nonbond interactions and thermodynamic

properties of molecular systems. J. Chem. Phys. 122, 014105 (2005).

doi:10.1063/1.1812257