Study of charge symmetry breaking via the gamma-ray ...jcnp2015/slides/session9_ukai.pdf · Ann....

27
Study of charge symmetry breaking via the gamma-ray spectroscopy of hypernuclei M. Ukai KEK/J-PARC Hadron for the E13 collaboration THROUGH THE LOOKING GLASS, AND WHAT FOUND ALICE THERE

Transcript of Study of charge symmetry breaking via the gamma-ray ...jcnp2015/slides/session9_ukai.pdf · Ann....

  • Study of charge symmetry breaking via the gamma-ray spectroscopy of hypernuclei

    M. UkaiKEK/J-PARC Hadron

    for the E13 collaboration

    THROUGH THE LOOKING GLASS,AND WHAT FOUND ALICE THERE

  • J-PARC E13 collaboration

  • Contents

    IntroductionCharge symmetry breaking in 4ΛΛΛΛH/ 4ΛΛΛΛHe

    Experiment at J-PARC (E13)

    Result of the 2015 physics runNew data on the excitation energy of 4ΛΛΛΛHe(1+)

    Future plan

    Summary

  • Charge symmetry breaking (CSB)in NN-interaction

    Small CSB effect in NN interaction

    G. A. Miller, A. K. Opper,

    and E. J. Stephenson,

    Ann. Rev. Nucl. Part. Sci. 56, 253 (2006).

    Scattering lengthAfter the electromagnetic correction

    Level scheme of mirror nuclei 3H / 3He

    3H

    1/2+

    3He

    1/2+

    764 keV

    difference

    Major component:

    Coulomb contribution

    CSB effect = 71 keV

    These differences ware explained

    by ρρρρ0-ωωωω exchange potential

  • Unexpectedly large difference in excitation energies (Eγγγγ) and ΛΛΛΛ-binding energies (BΛΛΛΛ)between the mirror hypernuclei.

    Charge symmetry breaking (CSB)in ΛΛΛΛN-interaction

    +H4

    Λ

    +He4

    Λ

    ΛΛΛΛp ≠ ΛΛΛΛn ?

    Considering• Coulomb force

    ( shrink effect of Λ )• 2 body ΛΛΛΛN-ΣΣΣΣN coupling

    ( ⇒ 3 body ΛN-ΣN mixing )

    ∆Β∆Β∆Β∆ΒΛΛΛΛ (0+) = 0.35 MeV , ∆Β∆Β∆Β∆ΒΛΛΛΛ (1+) = 0.28 MeV

    Level scheme of 4ΛΛΛΛH and 4ΛΛΛΛHe

    Many theoretical studies,but inconsistent with data

    Need re-examination ofexisting data

    A. Nogga, H. Kamada, and W. Gloockle,Phys. Rev. Lett. 88, 172501 (2002)

    1.09Eγ =

    Eγ =

    Large CSB in ΛΛΛΛN-interaction ?

    1.4 MeV

    [present data]

    ≠ np

  • Old experiment for Eγγγγ(4ΛΛΛΛHe)

    Only one experiment

    • Stopped K- reaction (Li target)• detecting ππππ0→γγ→γγ→γγ→γγ

    (with Pb + scinti. sandwich)

    for tagging hypernuclei

    • Doppler broaden γγγγ peak

    • NaI detector• Energy resolution : 120 keV(FWHM)

    • Limited statistics

    Higher sensitivity and statistics

    can be achieved by

    • In-flight 4He(K-,ππππ-)4ΛΛΛΛHe reaction• Ge detector (Energy resolution : 0.2%)• High intensity K beam

    + large acceptance spectrometers

    Gamma-ray energy spectrumwith detecting ππππ0→γγ→γγ→γγ→γγ decay

    reported value : 1.15 (0.04) MeV

    M. Bedjidian et al., Phys. Lett. B 83, 252 (1979).

    eye guide line (not fitting)

  • The J-PARC E13 experiment

  • J-PARC Hadron Experimental Facility

    30 GeV proton

    K -Experimental target

    Au 6 mm thick Primary target

    Linac

    3GeV synchrotron

    30GeV synchrotron

  • K----

    Use high intensity K- beam delivered from J-PARC K1.8 beam line

    ππππ−−−−γπ +→ ΛΛ−− ZZZ AAA *),(K

    Spectrometerfor scat. particle((((SksMinus))))

    Detect Detect Detect Detect γγγγ ray from ray from ray from ray from hypernucleihypernucleihypernucleihypernuclei・ Hyperball-J

    Tag Tag Tag Tag hypernuclearhypernuclearhypernuclearhypernuclear productionproductionproductionproduction

    ・ Beam line spectrometer・ SksMinus spectrometer

    reaction-γ coincidence experiment

    Beam linespectrometer

    Experimental setup (E13)

    Ge detector

    array

    Hyperball-J

    4ΛΛΛΛHe : liq.He target (2.7 g/cm

    2)

    length : ~23 cm

    size : 12cmφφφφpK = 1.5 GeV/c

  • K----

    Use high intensity K- beam delivered from J-PARC K1.8 beam line

    ππππ−−−−γπ +→ ΛΛ−− ZZZ AAA *),(K

    Spectrometerfor scat. particle((((SksMinus))))

    Detect Detect Detect Detect γγγγ ray from ray from ray from ray from hypernucleihypernucleihypernucleihypernuclei・ Hyperball-J

    Tag Tag Tag Tag hypernuclearhypernuclearhypernuclearhypernuclear productionproductionproductionproduction

    ・ Beam line spectrometer・ SksMinus spectrometer

    reaction-γ coincidence experiment

    Beam linespectrometer

    Experimental setup (E13)

    Ge detector

    array

    Hyperball-J

    4ΛΛΛΛHe : liq.He target (2.7 g/cm

    2)

    length : ~23 cm

    size : 12cmφφφφpK = 1.5 GeV/c

    J-PARC E13 He run done in 2015 April

  • Hyperball-J

    in air-conditioned hut

    SKS

    SKS downstream

    detectors

  • Hyperball-J Hyperball-J frameinstalled in K1.8

    Hyperball-J frame

    SKS magnet

    2012.8 @J-PARC K1.8

    mounting detectorsto the frame.

    with liq.He target

  • Analysis and Result

  • Missing mass spectrum4

    ΛΛΛΛHe productionMissing mass spectrumfor 4He(K-,ππππ-)X

    We can clearly select 4ΛΛΛΛHe bound events.

    • Missing mass resolution : 5 MeV (FWHM)• Small mount of B.G. contamination

    in “bound region” (10 MeV gate)

  • Mass gated gamma-ray spectrum

    Doppler correction

    Mass gate

    Gamma rays from non-strange nuclei

    (accidental coincidence background)

    No peak structure

  • Mass gated gamma-ray spectrumMass gate

    Some gamma rays from non-strange nuclei

    (accidental coincidence)

    Single peak was observed.

    Doppler correction

  • Revised level scheme and our findingOld level scheme

    Revised level scheme

    1.09

    ∆∆∆∆Eγγγγ = Eγγγγ(4ΛΛΛΛHe) - Eγγγγ(4ΛΛΛΛH)= 0.32 ±±±± 0.02 MeV

    ∆∆∆∆BΛΛΛΛ(1+) = BΛΛΛΛ(4ΛΛΛΛHe(1+)) - BΛΛΛΛ(4ΛΛΛΛH(1+))= 0.03 ±±±± 0.05 MeV

    ∆∆∆∆BΛΛΛΛ(0+) = 0.35 ±±±± 0.05 MeV

  • Revised level scheme and our findingOld level scheme

    Revised level scheme

    1.09

    ∆∆∆∆Eγγγγ = Eγγγγ(4ΛΛΛΛHe) - Eγγγγ(4ΛΛΛΛH)= 0.32 ±±±± 0.02 MeV

    ∆∆∆∆BΛΛΛΛ(1+) = BΛΛΛΛ(4ΛΛΛΛHe(1+)) - BΛΛΛΛ(4ΛΛΛΛH(1+))= 0.03 ±±±± 0.05 MeV

    ∆∆∆∆BΛΛΛΛ(0+) = 0.35 ±±±± 0.05 MeV

    Charge symmetry breaking isSpin-dependent

  • Hint of CSB for 0+/1+ differenceΛΛΛΛN-ΣΣΣΣN mixing effect

    Y. Akaishi, et. al.,

    Phys. Rev. Lett. 84, 3539 (2000).

    Same spin-dependence

    with present data

    ~10 times stronger in 0+

    ΛN-ΣN mixingLevel mixing of

    Λ and Σ hypernuclear levers

  • Present result is accepted to PRL

    arXiv:1508.00376

  • Further study

    4ΛΛΛΛH(1+→0+) measurement

  • Previous 4ΛΛΛΛH(1+→0+) measurement

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    1 2 3

    average

  • Previous 4ΛH(1+→0+) datavia stopped K- on Li target

    M. Bedjidian et al.Phys. Lett. B 62,467 (1976).

    M. Bedjidian et al.Phys. Lett. B 83,252 (1979).

    Large Doppler-broadening of γγγγ peak~ 160 keV (FWHM) (with 7%NaI resolution;kawachi)

    A. Kawachi, Doctoral thesisUniv. of Tokyo (1997)

    160 keV(FWHM) resolution

    (~180 keV w/ Doppler broad)

  • M. May reported high statistics gamma-ray peak

    From A= 4 hypernuclei on 7Li(K-, π−γ) dataSmaller Doppler broadening effect

    1.108 ±±±± 0.010 MeV with systematic error

    They claimed that the peak is sum of4

    ΛH(1.05 MeV) and 4

    ΛHe(1.15 MeV) gamma-rays

    4ΛH (~1.1 MeV) and

    4ΛHe(1.4 MeV) can be identify

    separately

    NaI 74 keV(FWHM) at 1 MeV

    1.1 1.4

    Possible reaction process; (K-,π-)reaction on α cluster

    K- + α α α α + t -> ΛΛΛΛ + 3He + ππππ- + t

    Λ+3He -> 4ΛHe (0+ only non-spin-flip) Λ+ t -> 4ΛH (Both 0+/1+ ratio =1:3 expected)

    ΛΛΛΛReasonable reaction to produce 4ΛΛΛΛH(1+) state

    7Li

    M.May, PRL 51(1983)2085

    Previous 4ΛH(1+→0+) datavia inflight (K−,π−) on 7Li target

    Higly unbound

    Bound region

  • M. May reported high statistics gamma-ray peak

    From A= 4 hypernuclei on 7Li(K-, π−γ) dataSmaller Doppler broadening effect

    1.108 ±±±± 0.010 MeV with systematic error

    They claimed that the peak is sum of4

    ΛH(1.05 MeV) and 4

    ΛHe(1.15 MeV) gamma-rays

    4ΛH (~1.1 MeV) and

    4ΛHe(1.4 MeV) can be identify

    separately

    NaI 74 keV(FWHM) at 1 MeV

    1.1 1.4

    Possible reaction process; (K-,π-)reaction on α cluster

    K- + α α α α + t -> ΛΛΛΛ + 3He + ππππ- + t

    Λ+3He -> 4ΛHe (0+ only non-spin-flip) Λ+ t -> 4ΛH (Both 0+/1+ ratio =1:3 expected)

    ΛΛΛΛReasonable reaction to produce 4ΛΛΛΛH(1+) state

    7Li

    M.May, PRL 51(1983)2085

    Previous 4ΛH(1+→0+) datavia inflight (K−,π−) on 7Li target

    Higly unbound

    Bound region

    We will confirm this result with high sensitivity by Hyperball-J and J-PARC K1.1 beam line

  • K1.1 Beam line @ 100 kW

    1.1 GeV/c 440 k/spill

    0.9 GeV/c 150 k/spill

    K1.1 available at ~2018

    will move from K1.8 to K1.1π- spectrometer SKS and Ge array Hyperball will move from K1.8 to K1.1

    Photo of SKS + Hyperball-J at K1.8

    Plan of 4ΛH(1+→0+) measurementvia inflight (K−,π−) on 7Li target at J-PARC

  • Summary

    Study of CSB in ΛΛΛΛN interactionA=4 hypernuclear structure

    The first result of γγγγ-ray spectroscopy @J-PARC

    Measured excitation energy of 4ΛΛΛΛHe(1+) = 1.406 ±±±± 0.002(stat.) ±±±±0.002(syst.) MeV

    Large CSB was confirmeduniquely by γγγγ-ray spectroscopy (compared with Eγ(4ΛH) )

    CSB effect is strongly spin-dependent(combined with emulsion data)

    Precise measurement of excitation energy of 4ΛΛΛΛH(1+) is

    planned at J-PARC K1.1 beam line