Structure of Surfactants Surfactant Surface Active Agent...

19
Surfactant Surface Active Agent polar headgroup hydrophobic tail Examples: SDS: C 10 H 21 OSO 3 - Na + DDAB: (C 12 H 25 ) 2 N(CH 3 ) 2 + Br - C 12 E 5 : C 12 H 25 O(C 2 H 4 O) 5 H DMPC: C 13 H 27 COOCH 2 C 13 H 27 COOCH CH 2 OPO 3 - CH 2 CH 2 N(CH 3 ) 3 + Structure of Surfactants

Transcript of Structure of Surfactants Surfactant Surface Active Agent...

Surfactant Surface Active Agent

polar headgrouphydrophobic tail

Examples: SDS: C10H21OSO3- Na+

DDAB: (C12H25 )2N(CH3)2+ Br -

C12E5: C12H25O(C2H4O)5H

DMPC: C13H27COOCH2

C13H27COOCH CH2OPO3

- CH2CH2N(CH3)3+

Structure of Surfactants

OR Na+

R = OSO3- / OCH2COO- / OPO3

2-

O

O

O

O

SO3- Na+

OO

OO

OR Na+

NH3+ X-

X = Cl, Br

N+

CH3

CH3

CH3X

N+

CH3

CH3X

Typical Anionic Surfactants

Typical Cationic Surfactants

Sodium alkyl sulfate / carboxylate / phosphate

Sodium bis(2-ethylhexyl)sulfosucinate (AOT)

Sodium alkylether sulfate / carboxylate / phosphate

Fatty amine halide Alkyl trimethylammonium halide

Dialkyl dimethylammonium halide

OO

OO

OOH

O

OHOH

O

OH

OO

OO

OO

OH

Typical Nonionic Surfactants

Fatty alcohol ethoxylate (CmEn)

Sorbitan alkanoate (´Span´)

Alkylphenol ethoxylate

O

O

CH2

CH

CH2

O

O

O

O

O

O

CH2

CH

CH2

O

O

O P OR

O

O

R = CH2CH2N(CH3)3+ Phosphatidylcholine

R = CH2CH2NH3+ Phosphatidylethanolamine

COO-

Typical Lipids

Fatty acid salt

triglyceride

phospholipid

log xs

g

cmc

Surfactants in Water

Gibbs Adsorption Isotherm: ˜¯

ˆÁË

Ê∂

g∂-=G

clnRT

1s

Surface tensionw = gDA

cmc _ exp(-De/kT)

De : transfer energy associated with moving a surfactant molecule from its monomeric form into its micellized state

cmc: typical values 10-2 M (e.g. ionic single chained soaps)

10-16 M (e.g.double chained phospholipids)to

Residence time of surfactant molecules within aggregates: tR _ t0 /cmc

t0 : motional correlation time (_10-9 - 10-7 s)

tR _ 10-6 s (micelles) - 10 8 s (biological membranes)

Dynamics of Self-Assembly

Self-Assembly of Surfactants

sphere rod disc

I NL NC

H L

amphiphile

The close packing volume fractions increase as the curvature of the colloidal particles decreases:

fmax =

p

12= 0.91

fmax =1

fmax =

p

18= 0. 74solid spheres:

cylinders:

planar bilayers:

decreasing curvature less excluded volume

lower interaction free energy

“self-energy” (surfactant parameter) + entropy of dispersion

I1 H1 V1 La V2 H2 I2

T

0 1f

Schematic Surfactant-Water Phase Diagram

no change in the sequence of mesophases

Cone:

V = al/3

a

l

Association number of a spherical micelle

V

Rp

3mic3

4 p=

a

R4p

2micp

=or

3

1

aR

V

mic

=

composed of surfactant molecules with volume V and area per molecule a:

Molecular Shape

v/al < 1 v/al = 1 v/al > 1

Surfactant Parameter: v/al

v: volume of the hydrophobic region

l: preferred length of the hydrophobic chain

a: polar headgroup cross sectional area

Local curvature of surfactant aggregates:

Surfactant packing parameter range for various surfactant aggregates

spherical micelles V/al < 1/3

cylindrcal micelles 1/3 < V/al < 1/2

vesicles, flexible bilayers 1/2 < V/al < 1

lamellae, planar bilayers V/al inverse micelles V/al > 1

ª 1

Cubic-I Phases

I1: direct micellesI2: reversed micelles

• “ringing gels”• non birefringent

NL NC

Nematic Phases

• no spatial periodicity• low viscosity• alignment in external fields

‘Unit Cell’ of the Cp - Phase

Phase Symmetry: Im3m

two interwoven polar labyrinths divided by a surfactant-bilayer

Minimal Surfaces

D G P

Structure of the Lamellar Phase

1D periodicity

basic bilayer structure of biological membranes

variations of interlamellar spacings

The Structure of the Hexagonal Phase

2-D Periodicityinfinitely long rods