Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP)...

31
PhysChem Forum 10, Syngenta, Jealott’s Hill, 23 rd March ’11 Solvent & geometric effects on non-covalent interactions Scott L. Cockroft

Transcript of Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP)...

Page 1: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

PhysChem Forum 10, Syngenta, Jealott’s Hill, 23rd March ’11

Solvent & geometric effects onnon-covalent interactions

Scott L. Cockroft

Page 2: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

QSAR & Physical Organic Chemistry

Quantifiable Physicochemical Properties

Quantifiable Biological Properties

� Non-covalent interactions (α, β, MEP)

� Electronic descriptors (σm, σp, σ*, F, R)

� Solubility

� Interactions with target

� Absorption

� Distribution

QSAR

Administration

� Solubility

� Lipophilicity (logP/D, π)

� Ionisable groups (pKa)

� Shape

� Molecular weight

� Distribution

� Metabolism

� Excretion

� Toxicology

output: e.g. identify structural features giving good potency,

identify outliers, predict new structures with better biological profiles

QSAR

Page 3: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

DRUG

Why study non-covalent interactions and solvation?

Drug-receptor interactions

Drug-solvent interactions

Protein-solvent

interactions

+

Drug-lipid interactions

(octanol?)

Drug-solvent interactions

solvent-solvent interactions

(liberated water)

+

solvent-solvent interactions

(liberated water)

+

Page 4: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Non-covalent interactions in biological recognition

COMPLICATED!COMPLICATED!

P. A. Williams, J. Cosme et al, Nature, 2003, 424, 464-468

Page 5: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Binding Energy, ∆∆∆∆G = ∆∆∆∆H – T∆∆∆∆S

electrostatic rotational

interactionchanges

structural changes

Total binding energy contributions

induction

dispersion

repulsion

van der Waals interactions

desolvation

translational

vibrational

Energy contributions from the WHOLE system = drug, solvent, receptor

Page 6: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

H-bond interaction energies are highly correlated with the maxima and minima ofcalculated molecular electrostatic potential surfaces.

H-bonds: back to basics, experiment vs. theory

MEPMIN

Calculate

d elect

rostatic pote

ntial

Experimental H-bond parameters measured in CCl4

αsβ

α2H β2

H(H-bond donors) (H-bond acceptors)

MEPMAX

Calculate

d elect

rostatic pote

ntial

Hunter & Cockroft unpublished resultsM. H. Abraham, J. A. Platts, J. Org. Chem. 2001, 66, 3484-3491

Page 7: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Possible to rescale α2Η and β2

Η H-bond constants such that:

H-bond scales

+

H-bond donor-acceptor interaction

∆∆∆∆G = – αβαβαβαβ

αααα= H-bond donor

constant

ββββ= H-bond acceptor constant in kJ mol-1

C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310-5324

Page 8: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Interaction energies in kJ mol-1

Page 9: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Binding Energy, ∆∆∆∆G = ∆∆∆∆H – T∆∆∆∆S

electrostatic rotational

interactionchanges

structural changes

Total binding energy contributions

induction

dispersion

repulsion

van der Waals interactions

desolvation

translational

vibrational

Energy contributions from the WHOLE system = drug, solvent, receptor

Page 10: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Solvent effects on non-covalent interactions

Ka

αβαsβ αsβsαβs

∆∆G = = αsβ + αβs – αβ + – αsβs + entropic term

α/β obtained from experimental measurements or calculated electrostatic potentials

C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310-5324

Page 11: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

(CF3)3C– OH O=P(n-Bu)3

Solvent effects on non-covalent interactions

This simple model has been applied in a range of circumstances:

• Single H-bonds in pure solvents and solvent mixturesJ. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. Vinter, Angew. Chem. Int. Ed. 2007

• Single H-bonds in solvent mixtures

COMPLEXITY

• Single H-bonds in solvent mixturesR. Cabot, C. A. Hunter, Org. Biomol. Chem., 2010

• Supramolecular complexes & Folding moleculesS. L. Cockroft, C. A. Hunter. Chem. Commun. 2006 & 2009

COMPLEXITY

Page 12: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

log Kexperiment

(CF3)3C– OH O=P(n-Bu)3

Solvent effects on H-bonding interactions

J. L. Cook, C. A. Hunter et al. Angew. Chem. Int. Ed. 2007, 46, 3706-3709

log Kpredicted

Page 13: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

MeO

O

O

O

Me

K

The puzzle of the Wilcox torsion balance

X

NO2

CNIBr

–0.88–1.26–0.96–1.09

∆Gfold /kJ mol-1

∆Gfold δ++

The α/β scale works well for simple H-bond interactions

one step up from a single H-bond, a simple supramolecular system.

Is it really that simple?

NNX

NN

OK

X

“The experiments support a conclusion that the electrostatic potential of the aromatic ring is not a dominant aspect of the aryl-aryl interaction.

The results should encourage increased emphasis on the importance of London dispersion forces in on-face aryl interactions involving neutral components”

S. Paliwal, S. Geib, C. S. Wilcox, J. Am. Chem. Soc. 1994, 116, 4497E. Kim, S. Paliwal, C. S. Wilcox, J. Am. Chem. Soc. 1998, 120, 11192

BrCH3

OHNH2

–1.09–1.12–0.96–0.75

∆Gfold

>250 literature citations

No obvious trend with variation of X-substituents.

δ++

δ−

Page 14: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Aromatic rings as H-bond acceptors

0.21.22.5

+100 kJ mol-1

0 kJ mol-1

– 100 kJ mol-1

βface

(H-bond acceptor constant)

0.21.22.5

Page 15: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Benzene vs. Chloroform

/ kJ m

ol-1

-5

-4

-3

-2

in C6D6

F. Hof, D. M. Scofield, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2004, 43, 5056 –5059

β face (H-bond acceptor constant)

∆G fo

ld/ kJ m

ol

in CDCl3

3210

+1

0

δ++δ−--

S. L. Cockroft, C. A. Hunter. Chem. Commun. 2006, 36, 3806-3808

Page 16: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

constant constant

∆∆GGedgeedge--faceface ∆∆GGsolsol--solsol∆∆GGsolsol--edgeedge∆∆GGsolsol--faceface

αedge x βfaceαsol x βface

S. L. Cockroft, C. A. Hunter. Chem. Commun. 2006, 36, 3806-3808

Page 17: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Aromatic solvation

1 x αsol 2 x αsol

S. L. Cockroft, C. A. Hunter. Chem. Commun. 2006, 36, 3806-3808

Page 18: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

∆G

fold

/ kJ m

ol-1

βface

3210

-5

-4

-3

-2

+1

0

-1

BENZENE

∆G

fold

/ kJ m

ol-1

CHLOROFORM

βface

3210

-5

-4

-3

-2

+1

0

-1 H

CF3

αedge x βfaceαsol x βface

Chloroform

Benzene1.0 x 2

1.0 x 22.2

1.6 x 2

Chloroform

S. L. Cockroft, C. A. Hunter. Chem. Commun. 2006, 36, 3806-3808

sl. >

<<

Page 19: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

2.2

∆G

fold

/ kJ m

ol-1 CF3

βface

3210

-5

-4

-3

-2

+1

0

-1

CHLOROFORM

3.2<<

H

αedge x βfaceαsol x βface

BENZENE

∆G

fold

/ kJ m

ol-1

3210

-5

-4

-3

-2

+1

0

-1 H

CF3

βface

Chloroform

2.0Benzene

=

sl. >

2.2

2.0

2.0

3.2

2.2

<< 3.2

2.0

<<

Cockroft & Hunter,Chem. Comm. 2009

Chloroform

Page 20: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

(CF3)3C– OH O=P(n-Bu)3

Solvent effects on non-covalent interactions

This simple model has been applied in a range of circumstances:

• Single H-bonds in pure solvents and solvent mixturesJ. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. Vinter, Angew. Chem. Int. Ed. 2007

• Single H-bonds in solvent mixtures

COMPLEXITY

• Single H-bonds in solvent mixturesR. Cabot, C. A. Hunter, Org. Biomol. Chem., 2010

• Supramolecular complexes & Folding moleculesS. L. Cockroft, C. A. Hunter. Chem. Commun. 2006 & 2009

COMPLEXITYBIOLOGY???

Page 21: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

• 27 edge-face interactions (+2 to –7 kJ mol-1)

Y = NMe2, H, NO2

X = NMe2, t-Bu, H, NO2, F, I, CF3

Range of aromatic interactions quantified

X

Y

Y

S

analysis

Cockroft & Hunter,Chem. Comm. 2009

Page 22: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

from electrostatic potentials to ααααedge & ββββface

+100 kJ mol-1

0 kJ mol-1

– 100 kJ mol-1 NH

Cockroft & Hunter,Chem. Comm. 2009

Page 23: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Electrostatic control of aromatic interactions

inte

ract

ion energ

yG / kJ mol-1

Same model as used to analyse Diederich data!

NN

H

HO

O

OX

∆∆∆∆∆∆∆∆G / kJ mol-1

Predicted interaction energy

Exp

erim

enta

l in

tera

ctio

n energ

y∆

∆∆

∆∆

∆∆

∆G

N

O

O

N

HYY

H

X

X

Cockroft & Hunter,Chem. Comm. 2009

Page 24: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Non-covalent interactions: non-equilibrium geometry

NONNON--EQUILIBRIUM GEOMETRYEQUILIBRIUM GEOMETRY

& BRIDGING SOLVENT MOLECULES!& BRIDGING SOLVENT MOLECULES!

P. A. Williams, J. Cosme et al, Nature, 2003, 424, 464-468

Page 25: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

∆∆∆∆G

Separation-interaction profiles

∆∆∆∆G

Page 26: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Implications:

• understand interplay of solvent and geometry & conformation of small molecules

• determine importance of dispersion interactions-what happens when solvent excluded?

Separation-interaction profiles

• determine importance of dispersion interactions-what happens when solvent excluded?

• quantify significance of long-range solvent-mediated (bridging) interactions

• predict solubility

• better force-fields for molecular modelling/docking, crystal structure prediction etc…

Many computational docking simulations use solvent fields because adding explicit solvent molecules is computationally expensive, is this a valid approach?

Page 27: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Folded

transition state

+

Unfolded

Kfold

Solvent effects on molecular folding

folded

unfolded

Folding coordinate

∆G‡

∆Gfold

∆∆∆∆G

I. K. Mati & S. L. Cockroft. Chem. Soc. Rev. 2010

= – RT lnKfold

Page 28: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Foldamers for quantifying non-covalent interactions

Wilcox, Diederich Motherwell

Z

Y

Y

Z

K fold

Oki, Gung Gellman

I. K. Mati & S. L. Cockroft. Chem. Soc. Rev. 2010

Page 29: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

Non-covalent interactions summary

Kaα α α α ββββ

X

dispersion interactions… non-equilibrium geometries…solvent effects

N

F

HO

XKfoldKfold

Page 30: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target

March 2010Sheep Heid, Edinburgh(Oldest pub in Scotland)

Page 31: Solvent & geometric effects on non-covalent interactions · Non-covalent interactions (α, β, MEP) Electronic descriptors (σm, σp, σ*, F, R) Solubility Interactions with target