Beam – Specimen Interactions Signals

81
Beam – Specimen Interactions Signals Backscattered Electrons Beam electrons scatter, and escape out of specimen primary signal from elastic scattering Example: Cu target 70% absorbed 30% backscattered Backscattered Electron Coefficient η = # BSE / # incident electrons

description

Beam – Specimen Interactions Signals. Backscattered Electrons Beam electrons scatter, and escape out of specimen primary signal from elastic scattering Example: Cu target 70% absorbed 30% backscattered Backscattered Electron Coefficient η = # BSE / # incident electrons. - PowerPoint PPT Presentation

Transcript of Beam – Specimen Interactions Signals

Page 1: Beam – Specimen Interactions Signals

Beam – Specimen Interactions

Signals

Backscattered Electrons

Beam electrons scatter, and escape out of specimen

primary signal from elastic scattering

Example: Cu target

70% absorbed

30% backscattered

Backscattered Electron Coefficient

η = # BSE / # incident electrons

Page 2: Beam – Specimen Interactions Signals

Backscattered Electrons:

Atomic # dependence

More trajectories intersect surface with higher Z target

Al Au

1μm η = 14.0% 0.2 μm η = 53.5%

Au – same scale as Al

Page 3: Beam – Specimen Interactions Signals

η = -0.0254 + 0.016Z – 1.86X10-4Z2 + 8.3X10-7Z3

For multi-component material: η = ∑Ciηi

Weak Z contrast

Strong Z contrast

Atomic Number

0 20 40 60 80 1000.0

0.1

0.2

0.3

0.4

0.5

0.6

Bac

ksca

tter

coe

ffic

ient

η

Page 4: Beam – Specimen Interactions Signals
Page 5: Beam – Specimen Interactions Signals

Si target

00 tilt η=17.5

450 tilt η=30.0

Page 6: Beam – Specimen Interactions Signals

Backscattered electrons:

Energy distribution

BSE have usually undergone a number of scattering events in target prior to emerging

Al Pb

0 E0 0 E0

Light elements = broad distribution most BSEs E << E0

Heavy elements = distribution skewed toward E0

Page 7: Beam – Specimen Interactions Signals

Backscattered electrons:

Spatial distribution

Electrons may emerge from an area outside beam incidence area

Al Pb

0 0

Light elements = broad distribution Heavy elements = narrow distribution

2 μm

Page 8: Beam – Specimen Interactions Signals

Backscattered Electrons

Greater energy loss farther from beam (more inelastic scattering events)

Better BSE resolution obtainable if select only highest energy BSEs

Distance from beam →

# BSE

BSEs within 10% of E0

All BSEs

Page 9: Beam – Specimen Interactions Signals

Beam – Specimen Interactions

Signals From Inelastic Scattering

• Secondary Electrons

• X-Rays

Continuum

Characteristic

• Auger Electrons

• Cathodoluminescence

Definition: Those electrons emitted with energy less than 50 eV

Produced by interaction of beam and weakly-bound conduction band electrons.

E transfer = a few eV

Peak emitted ~ 3-4 eV

Very shallow sampling depth

0 1.0

III

II

I

E/E0

dη/d

(E/E

0)In

tens

ity o

f S

E

Depth Z (nm)

0.0 2.5 5.0 7.5

Page 10: Beam – Specimen Interactions Signals

Secondary electron coefficient

δ = # SE / # incident beam electrons

Dependent on atomic number

if λ = mean free path

maximum emission depth ~ 5λ

For metals: λ ~ 1nm

abundant conduction band electrons

lots of inelastic scattering of SE

Insulators: λ ~ 10 nm

Information depth for SE ~ 1/100 of BSE

About 1% of primary beam electron range (Kanaya-Okayama range)

Page 11: Beam – Specimen Interactions Signals

Secondary electrons generated by primary beam electrons entering (I), or backscattering (II)

Can define two SE coefficients: δI and δII

SE generation generally more efficient via BSE (δII / δI= 3 to 4)

Greater path length in region defined by escape depth, plus increased scattering cross sections due to larger energy distribution (extending to lower energies) in BSEs…

primary

BSE5 λ

Page 12: Beam – Specimen Interactions Signals

Secondary electron density (#SE / unit area) defines apparent resolution

Generate SEI within λ / 2 of beam (~0.5nm for metals)

Primary beam ~ unscattered in 5λ region

Diameter of SEI escape = diameter of beam + 2X λ / 2

SEII occur over entire BSE escape area

1 μm or more – but peak sharply in center

SEI SEII SEtot

distance

Page 13: Beam – Specimen Interactions Signals

Influence of beam energy

η+δ

E1 E2E0 incident

Shape due mainly to variation in δ

Page 14: Beam – Specimen Interactions Signals

Some considerations for resolution…

With metal coating, secondary electrons detected primarily from coating

In some cases, can improve resolution using higher beam energy (remember – higher kV = higher brightness and smaller beam spot size

10kV

Si target

30kV

Page 15: Beam – Specimen Interactions Signals

10kV

20nm Au on Si substrate

30kVSE emission volume

Page 16: Beam – Specimen Interactions Signals

Beam – Specimen Interactions

Signals From Inelastic Scattering

• Secondary Electrons

• X-Rays

Continuum

Characteristic

• Auger Electrons

• Cathodoluminescence

Produced by deceleration of beam electrons in coulomb field of target atoms

→ energy loss

Expressed as emission of X-Ray photon

Results in continuous spectrum Most energetic = lowest wavelength

Short λ limit = Duane-Hunt limit

Results in background spectrum

Page 17: Beam – Specimen Interactions Signals

X-ray emission from Cu

Cu Kα

Cu Lα

Energy (keV)

0 2 4 6 8 10

1

3

5

7

N x

10-6

pho

tons

/ e- S

ter

theoretical

Actual – due to sample and window absorption + low detector efficiency

Cu Kβ

Page 18: Beam – Specimen Interactions Signals

X-ray continuum

Increase beam energy

Max continuum energy increases (short λ limit decreases)

Intensity at given energy increases

Intensity is a function of Z and photon energy

Kramers’ Law

I (continuum) ~ ipZ (E0 –Ev)/Ev

ip = probe current

Z = atomic #

E0 = beam energy

Ev = continuum photon energy

Background intensity is a determining factor in detection limits

Page 19: Beam – Specimen Interactions Signals

Beam – Specimen Interactions

Signals From Inelastic Scattering

• Secondary Electrons

• X-Rays

Continuum

Characteristic

• Auger Electrons

• Cathodoluminescence

INNER SHELL IONIZATION

1) If energy equal or greater than critical excitation potential…

Can eject inner shell electron

2) Atom wants to return to ground stateouter shell electron fills vacancy –

relaxation

Outer shell electron = higher energy state relative to inner shell electron

some energy surplus in the transition → photon emission (X-ray)

Page 20: Beam – Specimen Interactions Signals

The emitted X-ray is characteristic of the target element – Wavelength (or energy) = the transition energy Therefore is a manifestation of the electron configuration.

Example: E SiKα =1.740 keV (7.125Å)E FeKα = 6.404 keV (1.936Å)

Page 21: Beam – Specimen Interactions Signals

Polar coordinates…

Quantum state of an electron - Quantum numbers

Ψ(r,θ,Φ) = R(r)P(θ)F(Φ)nRadial componentPrincipal quantum number

lColatitudeOrbital quantum number

Ml

AzimuthalMagnetic quantum number

Yields three equations for three spatial variables

Space geometry of the solution of the Schrodinger equation for the hydrogen atom…

Z

X

Y

θΦ

Page 22: Beam – Specimen Interactions Signals

Rudi WinterAberystwyth University

Quantum state of an electron - Quantum numbersn Principal (shell) 1, 2, 3, …

radial = size K, L, M…

l Orbital – angular momentum

(subshell) 0 to n-1

s (sharp) l = 0

p (principal) l = 1

d (diffuse) l = 2

f (fundamental) l = 3

shape so if n = 2, l = 1: 2pml Orbital – Orientation (Magnetic, energy shift,

or energy level for each subshell)

orientation l to – l

ex: for l = 2: ml = -2, -1, 0, 1, 2

3 sp

atial

coo

rdin

ates

Page 23: Beam – Specimen Interactions Signals

Quantum state of an electron - Quantum numbers

ms Spin ½ , - ½

Single electron state of motion… n, l, ml, ms

or: n, l, j, ml

J Total angular momentum (quantum number j )

l +/- ½ = l + ms

(except l = 0, where J = ½ only)

Rudi WinterAberystwyth University

Page 24: Beam – Specimen Interactions Signals

The Orbitron:

Mark Winter, Univ. of Sheffield http://winter.group.shef.ac.uk/orbitron

1s 2p

4f

3d

5f

Page 25: Beam – Specimen Interactions Signals

Quantum Numbers for Electrons in Atomic Electron ShellsX-ray

notationModern notation

n l j = l + s (2j + 1)

K 1s 1 0 1/2 2

LI 2s 2 0 1/2 2

LII 2p1/2 2 1 1/2 2

LIII 2p3/2 2 1 3/2 4

MI 3s 3 0 1/2 2

MII 3p1/2 3 1 1/2 2

MIII 3p3/2 3 1 3/2 4

MIV 3d3/2 3 2 3/2 4

MV 3d5/2 3 2 5/2 6

NI 4s 4 0 1/2 2

NII 4p1/2 4 1 1/2 2

NIII 4p3/2 4 1 3/2 4

NIV 4d3/2 4 2 3/2 4

NV 4d5/2 4 2 5/2 6

NVI 4f5/2 4 3 5/2 6

NVII 4f7/2 4 3 7/2 8

Page 26: Beam – Specimen Interactions Signals

Ionization processes - Critical Excitation Potential

What voltage is necessary to ionize an atom?

Must overcome the electron binding energy – depends on

Electron quantum state (shell, subshell, and angular momentum)

Atomic # (Z)

Page 27: Beam – Specimen Interactions Signals

Element  K        L-I      L-II     L-III    M-I      M-II     M-III

         1s       2s       2p1/2    2p3/2    3s       3p1/2    3p3/2 

6 C     284.2*

 7 N     409.9*   37.3*

 8 0     543.1*   41.6*

11 Na    1070.8+  63.5+    30.65    30.81

12 Mg    1303.0+  88.7     49.78    49.50

13 Al    1559.6   117.8*   72.95    72.55

14 Si    1839     149.7*b  99.82    99.42

15 P     2145.5   189*     136*     135*

16 S     2472     230.9    163.6*   162.5*

26 Fe    7112     844.6+   719.9+   706.8+   91.3+    52.7+    52.7+

29 Cu    8979     1096.7+  952.3+   932.7    122.5+   77.3+    75.1+

57 La    38925    6266     5891     5483     1362*b   1209*b   1128*b

82 Pb    88005    15861    15200    13035    3851     3554     3066

92 U     115606   21757    20948    17166    5548     5182     4303

Electron binding energies (eV)

Page 28: Beam – Specimen Interactions Signals

Element  K        L-I      L-II     L-III    M-I      M-II     M-III

         1s       2s       2p1/2    2p3/2    3s       3p1/2    3p3/2 

6 C     284.2*

 7 N     409.9*   37.3*

 8 0     543.1*   41.6*

11 Na    1070.8+  63.5+    30.65    30.81

12 Mg    1303.0+  88.7     49.78    49.50

13 Al    1559.6   117.8*   72.95    72.55

14 Si    1839     149.7*b  99.82    99.42

15 P     2145.5   189*     136*     135*

16 S     2472     230.9    163.6*   162.5*

26 Fe    7112     844.6+   719.9+   706.8+   91.3+    52.7+    52.7+

29 Cu    8979     1096.7+  952.3+   932.7    122.5+   77.3+    75.1+

57 La    38925    6266     5891     5483     1362*b   1209*b   1128*b

82 Pb    88005    15861    15200    13035    3851     3554     3066

92 U     115606   21757    20948    17166    5548     5182     4303

Electron binding energies (eV) 2kV beam…

Page 29: Beam – Specimen Interactions Signals

Element  K        L-I      L-II     L-III    M-I      M-II     M-III

         1s       2s       2p1/2    2p3/2    3s       3p1/2    3p3/2 

6 C     284.2*

 7 N     409.9*   37.3*

 8 0     543.1*   41.6*

11 Na    1070.8+  63.5+    30.65    30.81

12 Mg    1303.0+  88.7     49.78    49.50

13 Al    1559.6   117.8*   72.95    72.55

14 Si    1839     149.7*b  99.82    99.42

15 P     2145.5   189*     136*     135*

16 S     2472     230.9    163.6*   162.5*

26 Fe    7112     844.6+   719.9+   706.8+   91.3+    52.7+    52.7+

29 Cu    8979     1096.7+  952.3+   932.7    122.5+   77.3+    75.1+

57 La    38925    6266     5891     5483     1362*b   1209*b   1128*b

82 Pb    88005    15861    15200    13035    3851     3554     3066

92 U     115606   21757    20948    17166    5548     5182     4303

Electron binding energies (eV) 15kV beam…

Page 30: Beam – Specimen Interactions Signals

Element  K        L-I      L-II     L-III    M-I      M-II     M-III

         1s       2s       2p1/2    2p3/2    3s       3p1/2    3p3/2 

6 C     284.2*

 7 N     409.9*   37.3*

 8 0     543.1*   41.6*

11 Na    1070.8+  63.5+    30.65    30.81

12 Mg    1303.0+  88.7     49.78    49.50

13 Al    1559.6   117.8*   72.95    72.55

14 Si    1839     149.7*b  99.82    99.42

15 P     2145.5   189*     136*     135*

16 S     2472     230.9    163.6*   162.5*

26 Fe    7112     844.6+   719.9+   706.8+   91.3+    52.7+    52.7+

29 Cu    8979     1096.7+  952.3+   932.7    122.5+   77.3+    75.1+

57 La    38925    6266     5891     5483     1362*b   1209*b   1128*b

82 Pb    88005    15861    15200    13035    3851     3554     3066

92 U     115606   21757    20948    17166    5548     5182     4303

Electron binding energies (eV) 20kV beam…

Page 31: Beam – Specimen Interactions Signals

Element  K        L-I      L-II     L-III    M-I      M-II     M-III

         1s       2s       2p1/2    2p3/2    3s       3p1/2    3p3/2 

6 C     284.2*

 7 N     409.9*   37.3*

 8 0     543.1*   41.6*

11 Na    1070.8+  63.5+    30.65    30.81

12 Mg    1303.0+  88.7     49.78    49.50

13 Al    1559.6   117.8*   72.95    72.55

14 Si    1839     149.7*b  99.82    99.42

15 P     2145.5   189*     136*     135*

16 S     2472     230.9    163.6*   162.5*

26 Fe    7112     844.6+   719.9+   706.8+   91.3+    52.7+    52.7+

29 Cu    8979     1096.7+  952.3+   932.7    122.5+   77.3+    75.1+

57 La    38925    6266     5891     5483     1362*b   1209*b   1128*b

82 Pb    88005    15861    15200    13035    3851     3554     3066

92 U     115606   21757    20948    17166    5548     5182     4303

Electron binding energies (eV) 50kV beam…

Page 32: Beam – Specimen Interactions Signals
Page 33: Beam – Specimen Interactions Signals
Page 34: Beam – Specimen Interactions Signals

Energy (or wavelength) of an X-ray depends on

Which shell ionization took place

Which shell relaxation electron comes from

K radiation

Electron removed from K shell

Kα electron fills K hole from L shell

Kβ electron fills K hole from M shell

L radiationElectron removed from L shellLα electron fills L hole from M shellLβ electron fills L hole from M or N shell

depends on which transition – which L level ionized and which M or N level is the source of the de-excitation electron

Karl Manne Siegbahn

Page 35: Beam – Specimen Interactions Signals

Energy level representation of Energy level representation of characteristic X-ray emission characteristic X-ray emission processprocess

L1 (2s) → K (1s) , why not?

Sufficiently energetic beam electron ionizes K shell…

Page 36: Beam – Specimen Interactions Signals

Selection rules for allowed transitions involving photon emission

(conservation of angular momentum)

Change in n (principal) must be ≥ 1

Change in l (subshell) can only be +1 or -1

Change in j (total angular momentum) can only be +1, -1, or 0

The photon, following Bose-Einstein statistics, has an intrinsic angular

momentum (spin) of 1.

So a K-shell vacancy must be filled by an electron from a p-orbital, but

can be 2p (L), 3p (M), or 4p (N)

So can’t fill K from L1 (2s) in transitions involving photon

emission

Page 37: Beam – Specimen Interactions Signals

Normal (diagram) level

Energy level (core or valence) described by removal of single electron from ground state configuration

Diagram lines

Originate from allowed transitions between diagram levels

Non-diagram (Satellite) lines

Generally originate from multiply-ionized states

Two vacancies of one shell (e.g. two K ionizations) → hypersatellite

Other effects from: Auger effect,

Coster-Kronig (subshell) transitions, etc.

X-Ray lines and electron transitions

Page 38: Beam – Specimen Interactions Signals
Page 39: Beam – Specimen Interactions Signals

Originally Ionized shell

Filled from…

Page 40: Beam – Specimen Interactions Signals

Bohr’s Three Postulates:

1) There are certain orbits in which the electron is stable and does not radiate

The energy of an electron in an orbit can be calculated - that energy is directly proportional to the distance from the nucleus

Bohr simply forbids electrons from occupying just any orbit around the nucleus such that they can’t lose energy and spiral in…

2) When an electron falls from an outer orbit to an inner orbit, it loses energy

…expressed as a quantum of electromagnetic radiation

3) A relationship exists between the mass, velocity and distance from the nucleus of an electron and Planck’s quantum constant…

Energy of Kα X-Ray

Page 41: Beam – Specimen Interactions Signals

From these principles, Bohr realized he could calculate the energy corresponding to an orbit:

m = mass of electrone = charge of electronħ = h / 2π

Page 42: Beam – Specimen Interactions Signals

If an electron jumps from orbit n=2 to orbit n, the energy loss is:

energy is radiated, and expressing Plank’s relationship in terms of angular frequency (ω), rather than frequency (ν):

Bohr theoretically has expressed Balmer’s formula and could calculate the Rydberg constant knowing m, e, c, and ħ

Page 43: Beam – Specimen Interactions Signals

Balmer and Paschen series in terms of frequency (n and m are integers)…

Multply both sides by Plank’s constant, h …Bohr assumes this is equal to the energy difference between two stationary states….

Single set of energy values to account for E differences…

Electron bound to + nucleus

And binding energy…

n identifies a stationary state

Page 44: Beam – Specimen Interactions Signals

Bohr assumes that proton and electron orbit around center of mass to derive orbital frequency of electron, then, arrives at an expression for radiation frequency for electron cascading through stationary states…

For large nFrom expression of binding energy, and orbital frequency of electron, and solving for R in terms of physical constants…

m = mass of electron

e = charge

ε= permittivity constant

From Coulomb’s Law

Page 45: Beam – Specimen Interactions Signals

Substituting the expression for R into expression for binding energy, gives binding energies of stationary states (Z is atomic #)

Now, an electron making K transition moves in field of force – potential energy function:

Seeing the charge of the nucleus (Z-1)e, and the other n=1 electron.

And from the equation above for binding energy, the transition energy is…

Page 46: Beam – Specimen Interactions Signals

Or about (10.2 eV)(Z-1)2

So: O = 0.5 keV

Si = 1.7 keV

Ca = 3.7 keV

Fe = 6.4 keV

An approximate expression for the energy of the Kα X-Ray (Bohr’s early quantum theory)

Page 47: Beam – Specimen Interactions Signals

Moseley’s Law

X-Ray energy is related to Z…

empirical relationship E = A(Z-C)2

(A and C are constants)

Bohr theory prediction for Kα … E = (10.2)(Z-1)2

Niels Bohr

Henry Moseley

Page 48: Beam – Specimen Interactions Signals

Produce overall X-ray spectrumCharacteristic peaks superimposed on a continuum background

X-rays can be detected and displayeddiscriminated either by energy (E) or wavelength (λ)

Energy Dispersive Spectrometry (EDS)

Page 49: Beam – Specimen Interactions Signals

Background

Page 50: Beam – Specimen Interactions Signals

Complex spectrum from monazite (Ce, La, Nd, Th) PO4

Page 51: Beam – Specimen Interactions Signals

For heavy elements

Complex spectra → peak overlaps

Note low pk / bkg for Th

Page 52: Beam – Specimen Interactions Signals

Wavelength Dispersive Spectrometry (WDS)

Si in garnet (pyrope)

TAP monochromator

SiKα

CaKα (2nd order)

SiKβ

Page 53: Beam – Specimen Interactions Signals

For heavy elements

Complex spectra → peak overlaps

Note low pk / bkg for Th

Page 54: Beam – Specimen Interactions Signals

Monazite (LIF monochromator) in wavelength region of NdL

EDS spectrum

Page 55: Beam – Specimen Interactions Signals

Depth of production of X-Rays

X-Rays generated over much of the interaction volume

Characteristic X-Rays produced in electron range where electron energy exceeds critical excitation potential

Z dependent

Recall ionization energies (keV)…

K L M

Si 1.55

Ca 4.03

Fe 7.10

Sn 29.1 4.46

Pt 13.9 3.3

Page 56: Beam – Specimen Interactions Signals

X-Ray region will be dependant on both Z and density (ρ)

Φ(ρZ)

High density = limited depth of production

Deeper production for low energy ionizations

3 g/cm3 10 g/cm320 keV

X-Ray spatial resolution

Page 57: Beam – Specimen Interactions Signals

Run PHIROZ95, Casino, Win X-Ray

Compare effects of

different beam energies

different materials

Different lines generated in different regions of interaction volume

Depends on electron energy distribution so function of:

Initial voltage

Material properties (Z, ρ)

Critical excitation potentials for ionization events of interest

Page 58: Beam – Specimen Interactions Signals

5%

10%

25%

50%

75%

Labradorite [.3-.5 (NaAlSi3O8) – .7-.5 (CaAl2Si2O8), Z = 11]

15 kV

Electron energy100% 1%

Energy contours

Page 59: Beam – Specimen Interactions Signals

Labradorite [.3-.5 (NaAlSi3O8) – .7-.5 (CaAl2Si2O8), Z = 11]

5%

10%

25%

50%

75%

100%

15 kV

10 kV

5 kV1 m

5%

10%

25%

50%

1 kV(~ Na K ionization energy)

(~ Ca K ionization energy)

Page 60: Beam – Specimen Interactions Signals

Three main conclusions:

For same material: line generation volumeM largeL mediumK small

K line of heavy element is excited from smaller region than K line of light element

K line of an element is excited from smaller volumes in denser, or higher average Z materials

Page 61: Beam – Specimen Interactions Signals

Putting it together…

Pb, Th, and U in monazite

Ionization energy for PbM-V level (to generate PbMα) = 2.484 keV

Ionization energy for ThM-V level = 3.332 keV

Ionization energy for UM-IV level (to generate UMβ) = 3.728 keVwill be trace element so ~ double the overvoltage to get reasonable count rates

= 8 keV (minimum beam energy)

Page 62: Beam – Specimen Interactions Signals

2.484 keV ionization potential…

This is the lowest required energy of the three elements (Pb, Th, U) and will, therefore, limit the analytical resolution

beam voltage % of beam voltage

5 49.68

10 24.84

15 16.56

20 12.42

25 9.936

30 8.28

Page 63: Beam – Specimen Interactions Signals

Monte Carlo simulation Electron paths Energy contours

5 keV (2.484 keV ionization potential for Pb M-V level is ~50% of the beam energy)

50%~ 40nm

Page 64: Beam – Specimen Interactions Signals

Monte Carlo simulation Electron paths Energy contours

15 keV (2.484 keV ionization potential for Pb M-V level is ~17% of the beam energy)

17% ~480nm

Page 65: Beam – Specimen Interactions Signals
Page 66: Beam – Specimen Interactions Signals

Remember, voltage limited to minimum of 8 kV (2x ionization energy of UM-IV)

Spatial resolution limit is then ~120 nm

Page 67: Beam – Specimen Interactions Signals

Analytical spatial resolution:DAR = (Dbeam

2 + Dscattering2)1/2

Based on depth containing 99.5% of total emitted intensity

Dbeam = beam diameterDscattering = scattering dimension, either depth or radial distribution defined by x-ray emission volumes

Page 68: Beam – Specimen Interactions Signals

Based on radius containing 99.5% of intensity

Page 69: Beam – Specimen Interactions Signals

D Beam (nm)

300

D Beam (nm)

800

Page 70: Beam – Specimen Interactions Signals
Page 71: Beam – Specimen Interactions Signals

Other signals from inelastic scattering

Auger process

Core level ionization

De-excitation via internal conversion and emission of another electron rather than X-Ray

→ doubly ionized state

Can result in satellite X-ray emission (Characteristic of electron configuration)

Very small perturbation on background of emitted electrons - Very low yield

Low energy - emitted from surface ~ 0.1nm depth (surface analysis technique)

e- (KLILIII)

K2

X-ray X-ray emissionemission

Auger Auger processprocess

Page 72: Beam – Specimen Interactions Signals
Page 73: Beam – Specimen Interactions Signals

Auger spectroscopy

Sample upper 20Å or so and evaluate kinetic energy of emitted electrons.

Materials Evaluation and Engineering, Inc. http://mee-inc.com/

Page 74: Beam – Specimen Interactions Signals
Page 75: Beam – Specimen Interactions Signals

Cathodoluminescence

Some insulators and semiconductors emit photons in the visible and UV when exposed to the electron beam

~ empty conduction band

~ full valence band

The band gap has characteristic energy

1) Promote electron to conduction band

Electron – hole pair

2) Recombination

3) Excess energy = band gap energy

Expressed as photon (visible)

Page 76: Beam – Specimen Interactions Signals
Page 77: Beam – Specimen Interactions Signals

Conduction band Almost Empty

Valence band Almost Full

Eg bandgap

Cathodoluminescence

Initial state1. Inelastic scattering imparts energy to specimen. Electron promoted to conduction band.

2. Recombination of electron-hole pair results in photon emission

Electron promoted from impurity donor level

Emitted photon energy = full band gap energy

ν = E(gap) / h

Emitted photon energy = impurity donor level

ν = E(gap-d) / h

donor level

Page 78: Beam – Specimen Interactions Signals

Sandstone, secondary electron imageSandstone, secondary electron image

100 m 100 m

Panchromatic CL image. Bright = K-fsp, dark = quartz.Panchromatic CL image. Bright = K-fsp, dark = quartz.

Page 79: Beam – Specimen Interactions Signals

40x60 micron 560nm 40x60 micron 560nm CL image of diatomsCL image of diatoms

16x12 micron 560nm 16x12 micron 560nm CL image of diatomsCL image of diatoms

Butcher et al. (2003) Photoluminescence and Cathodoluminescence Studies of Diatoms – Nature’s Own Nano-Porous Silica Structures

2.0-1.95 eV. Non-bridging hole centers

2.15eV. Self-trapped excitons related to Si nanoclusters?

Page 80: Beam – Specimen Interactions Signals

CL countsCL countsIn:Ga ratioIn:Ga ratio Peak CL wavelengthPeak CL wavelength

0.130.13

0.110.11

4000040000

40004000

428nm428nm

418nm418nm

Edwards et al. (2003) Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers

Integration of WDS and cathodoluminescence mapping. InGaN epilayers.

Page 81: Beam – Specimen Interactions Signals

Cathodoluminescence spectrum

Shifts energies and / or intensities due to impurities or crystal dislocations and other defects

Spectrum from GaAlAs

bulk

thin

Thin with lattice defects