Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

22
1 CMOS CMOS INTEGRATED CIRCUIT DESIGN TECHNIQUES INTEGRATED CIRCUIT DESIGN TECHNIQUES University of University of Ioannina Ioannina Scan Testing Scan Testing Scan Testing Scan Testing Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering Y. Tsiatouhas Overview Overview 1. 1. Scan testing: design and application Scan testing: design and application CMOS Integrated Circuit Design Techniques CMOS Integrated Circuit Design Techniques 2. 2. At speed testing At speed testing 3. 3. The scan The scanset design technique set design technique 4. 4. Scan testing power issues Scan testing power issues 5. 5. The scan The scanhold design technique hold design technique Scan Testing 2 6. 6. Level sensitive scan design Level sensitive scan design 7. 7. Broadcast and Illinois scan design Broadcast and Illinois scan design VLSI Systems and Computer Architecture Lab

Transcript of Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

Page 1: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

1

CMOSCMOS INTEGRATED CIRCUIT DESIGN TECHNIQUESINTEGRATED CIRCUIT DESIGN TECHNIQUES

University of University of IoanninaIoannina

Scan TestingScan TestingScan TestingScan Testing

Dept. of Computer Science and EngineeringDept. of Computer Science and Engineering

Y. Tsiatouhas

OverviewOverview

1.1. Scan testing: design and applicationScan testing: design and application

CMOS Integrated Circuit Design TechniquesCMOS Integrated Circuit Design Techniques

2.2. At speed testingAt speed testing

3.3. The scanThe scan‐‐set design techniqueset design technique

4.4. Scan testing power issuesScan testing power issues

5.5. The scanThe scan‐‐hold design techniquehold design technique

Scan Testing 2

g qg q

6.6. Level sensitive scan designLevel sensitive scan design

7.7. Broadcast and Illinois scan designBroadcast and Illinois scan designVLSI Systems

and Computer Architecture Lab

Page 2: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

2

Sequential Circuits TestingSequential Circuits Testing

outputs = f(inputs, state)

In sequential circuits the initial state(register’s values) is not by default known.Consequently, the sensitization of faults

InputsOutputsCombinational Combinational 

LogicLogic

and the propagation of the correspondingerroneous responses may turn to be a hardtask.A solution is to use techniques for theproper initialization of the circuit state toknown values.

• Application of proper test vectorsequences and/or the use of Set/Reset

Scan Testing 3

RegistersRegisters

““StateState””Clock

sequences and/or the use of Set/Resetsignals to setup the required state.

• Development of efficient techniques toset the initial state and observe thesubsequent state after the response ofthe circuit.

General Scan Testing SchemeGeneral Scan Testing Scheme

Scan‐In

LogicLogicRegistersRegisters

Scan‐Out

Inputs Outputs

ClockScanScan

RegisterRegister

Scan Testing 4

The memory elements (latches or Flip‐Flops) in a design are properly connected to forma unified shift register (scan register or chain). This way the internal state of the circuit isdetermined (controlled) by shifting in (scan‐in) to the scan register the required test datato be applied to the combinational logic. Moreover, the existing internal state (previouslogic response) can be observed by shifting out (scan‐out) the data stored into the scanregister.

Page 3: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

3

Scan Testing Design Scan Testing Design (Ι)(Ι)

PI POCombinationalCombinationalLogicLogic

Primary Inputs

Primary Outputs

RegisterRegister

PI PO

S I

Original Circuit

Full Scan

Pseudo‐Primary Outputs

PPI PPO

CombinationalCombinationalLogicLogic

Scan Testing 5

Scan‐In

Scan‐Out

Pseudo‐Primary Inputs

ScanScanRegisterRegister

Partial ScanMultiple Scan Chains

Scan Testing Design Scan Testing Design (Ι(ΙII))

PI PO

RegisterRegister

PI PO

S I N

Scan‐In_1

Scan‐Out_1

ScanScanRegisterRegister

CombinationalCombinationalLogicLogic

CombinationalCombinationalLogicLogic

Scan Testing 6

Scan‐In

Scan‐Out

Scan‐In_N

Scan‐Out_N

ScanScanRegisterRegister

ScanScanRegisterRegister

.

.

.

Page 4: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

4

Scan Path Design (I)Scan Path Design (I)nputs X1 Z1

utputs

CombinationalCombinational

Scan Chain

Primary In

. . . . . .X2

XK

Z2

ZN

. . .

SI

0

1

0

1

0

1

0

1

SOD Q

CLK

D Q

CLK

D Q

CLK1 2 M

MUX

MUX

MUX

MUX

“1”

Primary Ou

Scan FF D Flip‐Flop

CombinationalCombinationalLogicLogic

Scan Testing 7

Scan ModeSE=“1”

CLK

SE“1”

X1 Z1

nputs

utputs

CombinationalCombinational

Scan Path Design (II)Scan Path Design (II)

. . . . . .X2

XK

Z2

ZN

. . .

SI

0

1

0

1

0

1

0

1

SOD Q

CLK

D Q

CLK

D Q

CLK1 2 M

MUX

MUX

MUX

MUX

Scan Chain“0”

Primary In

Primary OuCombinationalCombinational

LogicLogic

Scan Testing 8

CLK

SE

Normal ModeSE=“0”

“0”

Page 5: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

5

Test Sequences During Scan TestingTest Sequences During Scan Testing

. . .

ary Inputs . . 

Test Vector

Prima

SI

. . 

Outputs

clock cycles.

.1st sequence 2nd sequence 3rd sequence 4th sequence Νth sequence (Ν+1)th sequence. . .

Test Response

Scan Testing 9

.

Primary O

SO

clock cycles

. . .

Scan ApplicationScan Application (Ι)(Ι)

Scan cells testing1

SE = “1”

Scan‐in of alternating“0” and “1” from the SI input

2

3 Μ+1 clock cycles

Scan Testing 10

Response observationat the SO output

4

Μ = # of scan cells

Page 6: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

6

Logic testing5

Scan ApplicationScan Application (Ι(ΙII))

g g

SE = “1”: Test data scan‐infrom the SI inputs

Μ clock cycles (scan‐in cycles)6

7 SE = “0”: Test patternapplication from the PI inputs

Scan Testing 11

Single clock pulse andresponse observation at the POs

single clock cycle (capture cycle)8

SE = “1”: New test data 

Scan ApplicationScan Application (Ι(ΙIIII))

scan‐in from the SIsand simultaneous scan‐out of the test responses from the SOs

9

10

Μ clock cycles

Exists anothertest vector;

YES7

Scan Testing 12

11 End

No

Page 7: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

7

D Q Out2D QIn2

D Q

CLK

In1D Q

CLKside path

Out11 1

1

Delay Fault TestingDelay Fault Testing

0

1

1 D Q

CLK

CLK

Out2D Q

CLK

In2

CLK

Logic

path under test

A path delay fault requires a pair of subsequent test vectors to be detected. The first test vector initializes the circuit while the second test vector activates the path under test.

V1 = <10>V2 = <11> ←  Path ac va on test vector

←  Ini alizing test vector

0 1

Scan Testing 13

The first test vector initializes the circuit while the second test vector activates the path under test. 

tCLK

InitializingVector

Application

LaunchActivationVector

TestResponseCapture

How scan testing facilities can be exploited for delay fault testing ? 

At speed clocking!

At Speed Scan Testing (I)At Speed Scan Testing (I)

. . . . . .

X1

X2

XK

Z1

Z2

ZN

(Skewed(Skewed‐‐load or Launchload or Launch‐‐onon‐‐shift Technique)shift Technique)

CombinationalCombinationalLogicLogic

XK ZN

. . .

CLK

SI0

1

0

1

0

1

0

1

SO

SE

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

MUX

MUX

MUX

MUX

Scan Chain

unch

pture

Scan Testing 14

CLK

tSE

Shift Shift Lau

Cap Shift

Fast Transition

Delay fault oriented scan testing technique

Shift

Page 8: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

8

At Speed Scan Testing (II)At Speed Scan Testing (II)

. . . . . .

X1

X2

XK

Z1

Z2

ZN

(Double Capture or Launch(Double Capture or Launch‐‐onon‐‐Capture Technique)Capture Technique)

CombinationalCombinationalLogicLogic

XK ZN

. . .

CLK

SI0

1

0

1

0

1

0

1

SO

SE

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

MUX

MUX

MUX

MUX

Scan Chain

unch

pture

Scan Testing 15

CLK

tSE

Shift Shift

DeadTime

Lau

Cap Shift

Delay fault oriented scan testing technique

Fast Clock Pulses GenerationFast Clock Pulses Generation

D Q

Q1 Q2 Q3 Q4 Q5

SE

Scan_CLK1 2 3 4 5

00

11

0

1

CLK

PLL

PLL_CLK

Shift Register

Scan_CLK

Clock_Gating

Scan Testing 16

_

t

SE

PLL_CLK

CLK

Clock_Gating

Page 9: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

9

The ClockedThe Clocked‐‐Scan TechniqueScan Technique

PI PO

X1

X2

Z1

Z2CombinationalCombinational

LogicLogicPI PO. . . . . .

XK ZN

SO

D Q

1SI

DCK

SCKSI

Flip‐Flop

DCK

D Q

2

DCK

SCKSI

D Q

M

DCK

SCKSI

. . .

Scan Testing 17

SCK

PI PO. . . . . .

X1

X2

X

Z1

Z2

Z

TheThe ScanScan‐‐Set Technique (I)Set Technique (I)

CombinationalCombinationalLogicLogic

XK ZN

. . .

SCLK

00

11

0

1

00

11

0

1

00

11

0

1

SE1

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

“0”

Scan Testing 18

SO

. . .

TCLK

SI

00

11

0

1

00

11

0

1

00

11

0

1

SE2

D Q

CLK1

D Q

CLK2

D Q

CLKM

Test Data Scan‐InSE1=“0” ‐ SE2=“1”

“1”

Page 10: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

10

PI PO. . . . . .

X1

X2

X

Z1

Z2

Z

TheThe ScanScan‐‐Set Technique (II)Set Technique (II)

CombinationalCombinationalLogicLogic

XK ZN

. . .

SCLK

00

11

0

1

00

11

0

1

00

11

0

1

SE1

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

“1”

Scan Testing 19

SO

. . .

TCLK

SI

00

11

0

1

00

11

0

1

00

11

0

1

SE2

D Q

CLK1

D Q

CLK2

D Q

CLKM

Test Data ApplicationSE1=“1” ‐ SE2=“0”

“0”

PI PO. . . . . .

X1

X2

X

Z1

Z2

Z

TheThe ScanScan‐‐Set Technique (III)Set Technique (III)

CombinationalCombinationalLogicLogic

XK ZN

. . .

SCLK

00

11

0

1

00

11

0

1

00

11

0

1

SE1

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

“0”

Scan Testing 20

SO

. . .

TCLK

SI

00

11

0

1

00

11

0

1

00

11

0

1

SE2

D Q

CLK1

D Q

CLK2

D Q

CLKM

Test Response CaptureSE1=“0” ‐ SE2=“0”

“0”

Page 11: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

11

TheThe ScanScan‐‐Set Technique (IV)Set Technique (IV)

PI PO. . . . . .

X1

X2

X

Z1

Z2

Z

CombinationalCombinationalLogicLogic

XK ZN

. . .

SCLK

00

11

0

1

00

11

0

1

00

11

0

1

SE1

D Q

CLK

D Q

CLK

D Q

CLK1 2 M

“0”

Scan Testing 21

SO

. . .

TCLK

SI

00

11

0

1

00

11

0

1

00

11

0

1

SE2

D Q

CLK1

D Q

CLK2

D Q

CLKM

Test Response Scan‐OutSE1=“0” ‐ SE2=“1”

“1”

Dual FlipDual Flip‐‐Flops Scan ArchitectureFlops Scan Architecture

SID1

Scan FF

from scan FF MasterLatch

Slave L t h

C

SCB

SCA

Flip‐Flop

Q

C2

to scan FF

Latch Latch

D QC1

D2

SO

System FFD1 Slave

LatchC1

Q

SCA

CUPTURE

UPDATE

Scan Testing 22

from logicto logicD

Master Latch

D Q

Q

C2

D2

Q

CLK

C

Intel

Page 12: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

12

Scan Testing ImpactScan Testing Impact

•Silicon area and pin count cost.

•Speed performance degradation.

•Test application time cost.

•Excess power consumption (usually outside circuit’sspecifications) during the scan‐in/out operations and thecapture of the test response in the scan chain.

Scan Testing 23

p p

Scan Chain

1  0   0    0    1   00  1   1   0   1   0

Test Vector Response

0

Scan Chain Shift Power Consumption (I)Scan Chain Shift Power Consumption (I)

CaptureCapture

0 1   0    0    0   10  1   1   0   1 0

1 0 1    0    0   00  1   1   0 1  0

0 1 0 1    0   00  1   1 0  1   0

1 0 1 0 1 00  1 0  0   1   0

Cycle 1Cycle 1

Cycle 2Cycle 2

Cycle 3Cycle 3

Cycle 4Cycle 4

Scan Testing 24

1 1 0  1  0 10 0   0   0   1   0

1 0 1  0  1   0

0 1 1 0  1 0 1  0   0   0   1   0

yy

Cycle 5Cycle 5

Cycle 6Cycle 6

Page 13: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

13

Scan Chain

0  1   1   0   1   0

Test Vector Response

0

Scan Chain Shift Power Consumption (II)Scan Chain Shift Power Consumption (II)

1  0   0    0    1   0

# Transitions0  1   1   0   1 0

1 0 1    0    0   00  1   1   0 1  0

0 1 0 1    0   00  1   1 0  1   0

1 0 1 0 1 00  1 0  0   1   0

0 1   0    0    0   1 # Transitions = Distance from 1st scan‐out bit 

Scan Testing 25

1 1 0 1  0 10 0   0   0   1   0

1 0 1 0  1   0

0 1 1 0  1 0 1  0   0   0   1   0

# Transitions = L – (Distance from 1st scan‐in bit)

L  =  scan chain length

h

Previous Test VectorPrevious Scan Chain State

New Response

Scan Chain Capture Power ConsumptionScan Chain Capture Power Consumption

0  1   1    1    0   1

1  0   1   0    0   0

Scan ChainPrevious Scan Chain State

Scan Chain

1  0   1    0    0   0 New Scan Chain State

Power consumption during scan testing procedures is a major concern since it can be severaltimes higher than this during the normal mode of operation. This can affect the reliability of

Scan Testing 26

g g p ythe circuit under test (CUT) due to overheat and electromigration phenomena.The excessive switching activity of the CUT during the scan operations may violate the powersupply IR and Ldi/dt drop limitations and increase the probability of noise induced testfailures. In addition, the elevated temperature can degrade the speed performance of theCUT and result to erroneous test responses that will invalidate the testing process and leadto yield loss.

Page 14: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

14

XX‐‐bit Assignmentbit Assignment

•A large number of bits in a test cube that is generated byan ATPG tool are don’t care bits (X‐bits).

• In order to apply a test cube for circuit testing, specificvalues must be assigned to the X‐bits (test vectorformation). This task is called X‐filling.

•The X‐filling process can be oriented for shift and/orcapture power reduction.

Scan Testing 27

Low Power ScanLow Power Scan

0

from logic to logic

Scan FFDI

Original Topology

CLK

SI1

SE

D Q

CLK

MUX

to scan FFfrom scan FF

Use of Data Gating (φραγμός δεδομένων)t h i t th t t f th ll i

Original Topology

SE

from logic

to logic

Scan FF

DI

Scan Testing 28

techniques at the output of the scan cells inorder to eliminate the signal transitions atthe inputs of the combinational logic duringthe scan‐in/out operations.Dynamic power reduction.

CLK

SI

0

1

D Q

CLK

MUX

to scan FF

DI

from scan FF

Page 15: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

15

ScanScan‐‐Hold FlipHold Flip‐‐FlopFlop

0

from logic to logic

Scan FFDI

Original Topology

CLK

SI1

SE

D Q

CLK

MUX

to scan FFfrom scan FF

FF

from logic to logic

Scan‐Hold FFDI

Original Topology

Scan Testing 29

Delay testing oriented Flip‐Flop!

+ Dynamic power reduction.

CLK

SI

0

1

SE

D Q

CLK

MUX

to scan‐hold FF

DI

from scan‐hold FFHold

FF LatchD Q

C

TheThe ScanScan‐‐Hold TechniqueHold Technique

PI PO

X1

X2

Z1

Z2CombinationalCombinational

LogicLogicPI PO. . . . . .

XK ZN

SO

D

Q

1

SI

D

C

ASI

ScanFF

D

Q

2

D

C

ASI

D

Q

M

D

C

ASI

. . .

ScanFF

ScanFF

Scan Testing 30

Hold

D

Q

Latch

C

SE

CLK

D

Q

Latch

C

D

Q

Latch

C

Intel

Scan‐Hold FF

Page 16: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

16

Level Sensitive Scan Design (I)Level Sensitive Scan Design (I)

PI PO

X1

X2

Z1

Z2CombinationalCombinational

LogicLogicPI PO. . . . . .

XK ZN

SO

D

Q

1

SI

D

C

ASI

L1

D

Q

2

D

C

ASI

L1

D

Q

M

D

C

ASI

L1. . .

Scan Testing 31

B

D

Q

L2

B

A

C

D

Q

L2

B

D

Q

L2

B

LSSD DesignIBM

Latches Pair

Level Sensitive Scan Design (II)Level Sensitive Scan Design (II)

PI PO

X1

X2

Z1

Z2CombinationalCombinational

LogicLogicPI PO. . . . . .

XK ZN

D

Q

1

SI

D

C

ASI

L1

D

Q

2

D

C

ASI

L1

D

Q

M

D

C

ASI

L1. . .

Scan Testing 32

SO

B

D

Q

L2

B

A

C2

D

Q

L2

B

D

Q

L2

B

LSSD DesignIBM

Latches PairC1 . . .

Page 17: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

17

Level Sensitive Scan Design (III)Level Sensitive Scan Design (III)

D Q

CLK

D

CLK

Q_FF

Edge Triggeredl l

D Q

CLK

D

CLK

Q_Latch

D Latch

D‐Latch and D‐Flip‐Flop operation

D

CLK

Q_Latch

Q_FF

D Flip‐Flop

Scan Testing 33

Non overlapping clocks

C ή A

t

BSI

Latches Pair

Test Data CompressionTest Data Compression

Typically, ATPG tools generate test vectors where only 1% to 5% of the bits have specified values! 

On the other hand, test data volume is a major concern for the available bandwidth and the 

.

.

.compressor

Compactor

Scan Chains

CompressedTestData

CompactedResponse

Stim

uli

st Responses

ATEs’ storage capabilities. 

Test Patterns

Scan Testing 34

.

Dec C

CUTCUT

Low Cost ATE Tes

ChipChipComparator

Expected Responses

Page 18: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

18

Linear DecompressionLinear Decompression

X1

Z9 Z5 Z1

Decompressor

Scan Chains

8753211 XXXXXZ 65217 XXXXZ 413 XXZ

652110 XXXXZ 416 XXZ 32 XZ

9419 XXXZ 735 XXZ 521 XXZ

107312 XXXZ 8528 XXXZ 614 XXZ

X2

X3

Z9 Z5 Z1

Z10 Z6 Z2

Z11 Z7 Z3

X9 X5X7

Scan Testing 35

X4

Z12 Z8 Z4X10 X6X8

XOR

Broadcast & Illinois Scan DesignBroadcast & Illinois Scan Design

SI

SC1 SC2 SCn. . .

B d t S D i

C1 C2 Cn. . .

Broadcast Scan Design

Segment 1SI

SO4

B‐S_Mode

0

SO3SO2SO1

Combinational Logic   C

Scan Testing 36

g

Segment 2

Segment 3

Segment 40

1

Illinois Scan Design

0

1

0

1

Combinational Logic   C

Page 19: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

19

Reconfigurable Broadcast Scan DesignReconfigurable Broadcast Scan Design

0

Pin1 Pin2 Pin3 Pin4 Control

Scan_Chain 1

1

0

1

0

1

Scan_Chain 2

Scan_Chain 3

DynamicReconfiguration

Scan Testing 37

0

1

Scan_Chain 4

Scan_Chain 5

Scan_Chain 6

Space CompactionSpace Compaction

SCO1 SCO2 SCO3 SCO4 SCO5 SCO6 SCO7 SCO8

Scan

‐Chain 1

Scan

‐Chain 2

Scan

‐Chain 3

Scan

‐Chain 4

Scan

‐Chain 5

Scan

‐Chain 6

Scan

‐Chain 7

Scan

‐Chain 8

Scan‐chains’ outputs

Scan Testing 38

Linear Phase

Compactor

Out1 Out2 Out3 Out4X‐Compact

Page 20: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

20

RandomRandom––Access Scan DesignAccess Scan Design

PI PO. . . . . .

X1X2

XK

Z1Z2

ZN

Combinational LogicCombinational Logic

Q

N

SC

SC

...

SC

SC

...

SC

SC

...

Row (X) Decoder

CLK

SI

SO

Scan Cell

Scan Testing 39

D

Q

CLKSE

SI

SC

0

1SI

TM

AS CLK

Q

SC SC SC

Column (Y) Decoder

Address Shift Register

R

…SO

AI

SI

Reordering of Scan Chain FlipReordering of Scan Chain Flip‐‐FlopsFlops (Ι)(Ι)

44FFFF8FF8FF

Typical Scan Chain

50Test

Vectors

300Test

Vectors

2FF

2FF

50 TV  300TV

ΙΝ

Scan Testing 40

SO2FF2FF44FFFF

Test Application: 300(20+1)+20 = 6320 clock cycles“Random” register

connection

1st Alternative Test Application: 300(14+1)+8 = 4508 clock cyclesImprovement

29% !

Page 21: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

21

SI 44FFFF8FF8FF

2nd Alternative Scan Testing Application

Reordering of Scan Chain FlipReordering of Scan Chain Flip‐‐FlopsFlops ((IIII))

50Test

Vectors

300Test

Vectors

2FF

2FF ΙΝ

Scan Testing 41

SO

Test Application:

2FF2FF44FFFF

50(14+1)     =   750 clock cycles

250(12+1)+8 = 3258 clock cycles

4008 clock cycles

Improvement37% !

SI44FFFF8FF8FF

3rd Alternative Scan Testing Application with cell reordering

Reordering of Scan Chain FlipReordering of Scan Chain Flip‐‐FlopsFlops ((IIIIII))

50ΔιανύσματαΕλέγχου

300ΔιανύσματαΕλέγχου

2FF

2FF ΙΝ

Scan Testing 42

SO

Test Application: 50(18+1)     =   950 clock cycles

250(4+1)+4 = 1254 clock cycles

2204 clock cycles

2FF2FF44FFFF

Improvement65% !

In addition, test powerreduction is achieved!

Page 22: Section 8 2-CCD.ppt [Λειτουργία συμβατότητας]

22

ReferencesReferences

• “Principles of Testing Electronics Systems,” S. Mourad and Y. Zorian, John Wiley& Sons, 2000.

• “Essentials of Electronic Testing: for Digital Memory and Mixed‐Signal VLSI• Essentials of Electronic Testing: for Digital, Memory and Mixed‐Signal VLSICircuits,” M. Bushnell and V. Agrawal, Kluwer Academic Publishers, 2000.

• “Power‐Constrained Testing of VLSI Circuits,” N. Nicolici and B. Al‐Hashimi,Kluwer Academic Publishers, 2003.

• “Digital Systems Testing and Testable Design,” M. Abramovici, M. Breuer and A.Friedman, Computer Science Press, 1990.

• “System‐on‐Chip Test Architectures,” L‐T Wang, C. Stroud and N. Touba,Morgan‐Kaufmann, 2008.

Scan Testing 43

• “VLSI Test Principles and Architectures,” L‐T Wang, C‐W. Wu and X. Wen,Morgan‐Kaufmann, 2006.