RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

59
RIGIDITY OF GROUP ACTIONS I. Introduction to Super-Rigidity Alex Furman (University of Illinois at Chicago) February 28, 2007

Transcript of RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Page 1: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

RIGIDITY OF GROUP ACTIONS

I. Introduction to Super-Rigidity

Alex Furman(University of Illinois at Chicago)

February 28, 2007

Page 2: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

The Super-rigidity Phenomenon

For some Γ < G representations ρ : Γ−→H extend to G :

Γ

��

ρ // H

G

ρ??~~~~~~~

G is a “higher rank” lcsc group

Γ < G – an (irreducible) lattice

ρ : Γ−→H with ρ(Γ) “non-elemntary” in H.

Page 3: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

The Super-rigidity Phenomenon

For some Γ < G representations ρ : Γ−→H extend to G :

Γ

��

ρ // H

G

ρ??~~~~~~~

provided

G is a “higher rank” lcsc group

Γ < G – an (irreducible) lattice

ρ : Γ−→H with ρ(Γ) “non-elemntary” in H.

Page 4: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

The Super-rigidity Phenomenon

For some Γ < G representations ρ : Γ−→H extend to G :

Γ

��

ρ // H

G

ρ??~~~~~~~

provided

G is a “higher rank” lcsc group

Γ < G – an (irreducible) lattice

ρ : Γ−→H with ρ(Γ) “non-elemntary” in H.

Page 5: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

The Super-rigidity Phenomenon

For some Γ < G representations ρ : Γ−→H extend to G :

Γ

��

ρ // H

G

ρ??~~~~~~~

provided

G is a “higher rank” lcsc group

Γ < G – an (irreducible) lattice

ρ : Γ−→H with ρ(Γ) “non-elemntary” in H.

Page 6: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.

Γ < G =∏n

i=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 7: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 8: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 9: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 10: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 11: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Page 12: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Lattices

DefinitionΓ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.Γ < G =

∏ni=1 Gi is irreducible if pri (Γ) dense in Gi .

Examples (Arithmetic)

I Γ = Zn in G = Rn

I Γ = SLn(Z) in G = SLn(R)

I Γ = Z(√

2) in G = R2 with (a + b√

2, a− b√

2)

I “similar” construction of Γ in G = SL2(R)× SL2(R)

Example (Geometric)

Γ = π1(M) for M – loc. symmetric, compact (or vol(M) < ∞)is a lattice in G = Isom(M).

Page 13: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)

Assume

G =∏

Gi – semi-simple Lie group with rk(G ) ≥ 2

H – simple and center free

Γ < G – an irreducible lattice

ρ : Γ−→H with ρ(Γ) Zariski dense in H.

Then

I either ρ(Γ) precompact in H

I or ρ : Γ−→H extends to Gρ−→H.

Theorem (Arithmeticity, Margulis 1970s)

In higher rank all irreducible lattices are arithmetic !

Page 14: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)

Assume

G =∏

Gi – semi-simple Lie group with rk(G ) ≥ 2

H – simple and center free

Γ < G – an irreducible lattice

ρ : Γ−→H with ρ(Γ) Zariski dense in H.

Then

I either ρ(Γ) precompact in H

I or ρ : Γ−→H extends to Gρ−→H.

Theorem (Arithmeticity, Margulis 1970s)

In higher rank all irreducible lattices are arithmetic !

Page 15: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)

Assume

G =∏

Gi – semi-simple Lie group with rk(G ) ≥ 2

H – simple and center free

Γ < G – an irreducible lattice

ρ : Γ−→H with ρ(Γ) Zariski dense in H.

Then

I either ρ(Γ) precompact in H

I or ρ : Γ−→H extends to Gρ−→H.

Theorem (Arithmeticity, Margulis 1970s)

In higher rank all irreducible lattices are arithmetic !

Page 16: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 17: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 18: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 19: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 20: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 21: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Measurable CocyclesG ,H – lcsc groups, G y (X , µ) – prob. m.p. action

Cocycles: measurable maps c : G × X → H s.t.

∀g1, g2 ∈ G : c(g1g2, x) = c(g1, g2.x) · c(g2, x)

Cohomologous cocycles: c ∼ c ′ if ∃ f : X → H s.t.

c ′(g , x) = f (g .x)c(g , x)f (x)−1

Examples

I c(g , x) = ρ(g) for some hom ρ : G → H.

I σ : G × G/Γ−→Γ – the “canonical” cocycle

Observation

{ρ : Γ−→H}/conj ∼= {c : G × G/Γ → H}/ ∼ .

Page 22: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidty, Zimmer 1981)

Let G =∏

Gi be a semi-simple Lie group with rk(G ) ≥ 2.G y (X , µ) a prob. m.p. action with each Gi ergodic.

H – simple center free, c : G × X → H Zariski dense cocycle.Then

I either c ∼ c0 : G × X → K with K – compact subgrp in H

I or c ∼ ρ : G → H: c(g , x) = f (g .x)ρ(g)f (x)−1.

Remarks

I Margulis’ super-rigidity corresponds to X = G/Γ

I Proofs combine Algebraic groups with Ergodic Theory

G -boundary (B, ν) = (G/P,Haar) plays a key role

Page 23: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidty, Zimmer 1981)

Let G =∏

Gi be a semi-simple Lie group with rk(G ) ≥ 2.G y (X , µ) a prob. m.p. action with each Gi ergodic.H – simple center free, c : G × X → H Zariski dense cocycle.

Then

I either c ∼ c0 : G × X → K with K – compact subgrp in H

I or c ∼ ρ : G → H: c(g , x) = f (g .x)ρ(g)f (x)−1.

Remarks

I Margulis’ super-rigidity corresponds to X = G/Γ

I Proofs combine Algebraic groups with Ergodic Theory

G -boundary (B, ν) = (G/P,Haar) plays a key role

Page 24: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidty, Zimmer 1981)

Let G =∏

Gi be a semi-simple Lie group with rk(G ) ≥ 2.G y (X , µ) a prob. m.p. action with each Gi ergodic.H – simple center free, c : G × X → H Zariski dense cocycle.Then

I either c ∼ c0 : G × X → K with K – compact subgrp in H

I or c ∼ ρ : G → H: c(g , x) = f (g .x)ρ(g)f (x)−1.

Remarks

I Margulis’ super-rigidity corresponds to X = G/Γ

I Proofs combine Algebraic groups with Ergodic Theory

G -boundary (B, ν) = (G/P,Haar) plays a key role

Page 25: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidty, Zimmer 1981)

Let G =∏

Gi be a semi-simple Lie group with rk(G ) ≥ 2.G y (X , µ) a prob. m.p. action with each Gi ergodic.H – simple center free, c : G × X → H Zariski dense cocycle.Then

I either c ∼ c0 : G × X → K with K – compact subgrp in H

I or c ∼ ρ : G → H: c(g , x) = f (g .x)ρ(g)f (x)−1.

Remarks

I Margulis’ super-rigidity corresponds to X = G/Γ

I Proofs combine Algebraic groups with Ergodic Theory

G -boundary (B, ν) = (G/P,Haar) plays a key role

Page 26: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidty, Zimmer 1981)

Let G =∏

Gi be a semi-simple Lie group with rk(G ) ≥ 2.G y (X , µ) a prob. m.p. action with each Gi ergodic.H – simple center free, c : G × X → H Zariski dense cocycle.Then

I either c ∼ c0 : G × X → K with K – compact subgrp in H

I or c ∼ ρ : G → H: c(g , x) = f (g .x)ρ(g)f (x)−1.

Remarks

I Margulis’ super-rigidity corresponds to X = G/Γ

I Proofs combine Algebraic groups with Ergodic Theory

G -boundary (B, ν) = (G/P,Haar) plays a key role

Page 27: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Cocycles: where from and what for ?

I Volume preserving Actions on Manifolds

ρ : Γ−→Diff(M, vol)

Γ y TM ∼= Rd ×M where d = dim M

α : Γ×M → GLd(R) or α : Γ×M → SLd(R).

I Orbit Equivalence in Ergodic Theory

Γ y (X , µ) and Λ y (Y , ν) free erg. actions

OE is T : (X , µ) ∼= (Y , ν) with T (Γ.x) = Λ.T (x)

αT : Γ× X → Λ by T (γ.x) = α(g , x).T (x)

Page 28: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Cocycles: where from and what for ?

I Volume preserving Actions on Manifolds

ρ : Γ−→Diff(M, vol)Γ y TM ∼= Rd ×M where d = dim M

α : Γ×M → GLd(R) or α : Γ×M → SLd(R).

I Orbit Equivalence in Ergodic Theory

Γ y (X , µ) and Λ y (Y , ν) free erg. actions

OE is T : (X , µ) ∼= (Y , ν) with T (Γ.x) = Λ.T (x)

αT : Γ× X → Λ by T (γ.x) = α(g , x).T (x)

Page 29: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Cocycles: where from and what for ?

I Volume preserving Actions on Manifolds

ρ : Γ−→Diff(M, vol)Γ y TM ∼= Rd ×M where d = dim M

α : Γ×M → GLd(R) or α : Γ×M → SLd(R).

I Orbit Equivalence in Ergodic Theory

Γ y (X , µ) and Λ y (Y , ν) free erg. actions

OE is T : (X , µ) ∼= (Y , ν) with T (Γ.x) = Λ.T (x)

αT : Γ× X → Λ by T (γ.x) = α(g , x).T (x)

Page 30: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Cocycles: where from and what for ?

I Volume preserving Actions on Manifolds

ρ : Γ−→Diff(M, vol)Γ y TM ∼= Rd ×M where d = dim M

α : Γ×M → GLd(R) or α : Γ×M → SLd(R).

I Orbit Equivalence in Ergodic Theory

Γ y (X , µ) and Λ y (Y , ν) free erg. actions

OE is T : (X , µ) ∼= (Y , ν) with T (Γ.x) = Λ.T (x)

αT : Γ× X → Λ by T (γ.x) = α(g , x).T (x)

Page 31: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Cocycles: where from and what for ?

I Volume preserving Actions on Manifolds

ρ : Γ−→Diff(M, vol)Γ y TM ∼= Rd ×M where d = dim M

α : Γ×M → GLd(R) or α : Γ×M → SLd(R).

I Orbit Equivalence in Ergodic Theory

Γ y (X , µ) and Λ y (Y , ν) free erg. actions

OE is T : (X , µ) ∼= (Y , ν) with T (Γ.x) = Λ.T (x)

αT : Γ× X → Λ by T (γ.x) = α(g , x).T (x)

Page 32: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 33: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 34: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 35: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 36: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 37: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 38: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 39: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Popa’s Cocycle Super-rigidity

Theorem (S.Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.

Then for any discrete or compact Λ every cocycle α : Γ×X → Λis cohomologous to a homomorphism ρ : Γ → Λ.

Remark

I Λ arbitrary discrete or compact (or in Ufin) !

I No assumptions on α ! All cocycles ∼ to homs in Λ !

I “deformation-rigidity”: malleability - spectral assumption (T)

I The assumption on the action Γ y X rather than on G or Γ

I leads to “von Neumann rigidity”

Page 40: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) ????? ????? ????? ????? ?????

Γ < G alg Margulisalg G× X ZimmerΓ < Λ < G Margulis

Margulis (1974) Zimmer Ann.Math. (1981)

Page 41: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) ????? ????? ????? ?????

Γ < G alg Margulis Bu-Mzsalg G× X ZimmerΓ < Λ < G Margulis Bu-Mzs

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996)

Page 42: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp ????? ????? ?????

Γ < G alg Margulis Bu-Mzsalg G× X Zimmer Adams AdamsΓ < Λ < G Margulis Bu-Mzs

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)

Page 43: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp ????? ????? ?????

Γ < G alg Margulis Bu-Mzs Furstalg G× X Zimmer Adams AdamsΓ < Λ < G Margulis Bu-Mzs

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967)

Page 44: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp ????? Modg ?????

Γ < G alg Margulis Bu-Mzs Furst K-Malg G× X Zimmer Adams AdamsΓ < Λ < G Margulis Bu-Mzs

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)

Page 45: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg ?????

Γ < G alg Margulis Bu-Mzs Furst Ghys K-Malg G× X Zimmer Adams AdamsΓ < Λ < G Margulis Bu-Mzs

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999)

Page 46: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams (T)Γ < Λ < G Margulis Bu-Mzs ShalomΓ <

∏Gi Sh∏

Gi × X (Shalom)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)

Page 47: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs ShalomΓ <

∏Gi Sh∏

Gi × X (Shalom)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001)

Page 48: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs ShalomΓ <

∏Gi Md-Sh M-M-S Sh∏

Gi × X and H-K and H-K (Shalom)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001) Monod-Shalom JDG (2004)Mineev-Monod-Shalom Top.(2004) Hjorth-Kechris Mem.AMS (2005)

Page 49: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs ShalomΓ <

∏Gi Monod Md-Sh M-M-S Sh Md∏

Gi × X and H-K and H-K (Shalom)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001) Monod-Shalom JDG (2004)Mineev-Monod-Shalom Top.(2004) Hjorth-Kechris Mem.AMS (2005)Monod JAMS (2006)

Page 50: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs ShalomΓ <

∏Gi Monod Md-Sh M-M-S Sh Md∏

Gi × X (F-Md) and H-K and H-K (Shalom)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001) Monod-Shalom JDG (2004)Mineev-Monod-Shalom Top.(2004) Hjorth-Kechris Mem.AMS (2005)Monod JAMS (2006) Furman-Monod (2007)

Page 51: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs B-F-S ShalomΓ <

∏Gi Monod Md-Sh M-M-S B-F-S Sh Md∏

Gi × X (F-Md) and H-K and H-K B-F-S (Shalom)

Γ y A2 B-F-S (T)Γ× X B-F-S (T)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001) Monod-Shalom JDG (2004)Mineev-Monod-Shalom Top.(2004) Hjorth-Kechris Mem.AMS (2005)Monod JAMS (2006) Furman-Monod (2007)Bader-Furman-Shaker (2006)

Page 52: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

More Margulis-Zimmer like Super-rigidity results

Targets H H(k) CAT(−1) δ-Hyp y S1 Modg Isom(H)

Γ < G alg Margulis Bu-Mzs Furst Ghys K-M (T)alg G× X Zimmer Adams Adams Wi-Zi (T)Γ < Λ < G Margulis Bu-Mzs B-F B-F-S ShalomΓ <

∏Gi Monod Md-Sh M-M-S B-F-S Sh Md∏

Gi × X (F-Md) and H-K and H-K B-F-S (Shalom)

Γ y A2 B-F B-F B-F-S (T)Γ× X B-F B-F B-F-S (T)

Margulis (1974) Zimmer Ann.Math. (1981)Burger-Mozes JAMS (1996) Adams ETDS (1996)Furstenberg Bull.AMS (1967) Kaimanovich-Masur Invent. (1996)Ghys Inven. (1999) Shalom Inven. (2000)Witte-Zimmer Geom.Ded.(2001) Monod-Shalom JDG (2004)Mineev-Monod-Shalom Top.(2004) Hjorth-Kechris Mem.AMS (2005)Monod JAMS (2006) Furman-Monod (2007)Bader-Furman-Shaker (2006) Bader-Furman (2007)

Page 53: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 54: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 55: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 56: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 57: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 58: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.

Page 59: RIGIDITY OF GROUP ACTIONS [12pt] I. Introduction to Super-Rigidity

Boundary and the Weyl group

Definition (G -Boundaries, after Burger-Monod)G – a general lcsc grp.A G -boundary is a msbl G -space (B, [ν]) so that

I G y (B, [ν]) is amenable

I G y (B × B, [ν × ν]) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))Given a G -boundary (B, ν) let WG ,B = Aut (B × B, [ν × ν])G .

Examples

I G -ss alg, B = G/P then WG ,B – the classical Weyl

(e.g. G = SLn W = Sn)

I G hyperbolic-like W = Z/2Z

I G amenable, can take trivial B and W

I G =∏n Gi with non-amenble factors, (Z/2Z)n < WG ,

QBi

.