Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements...

35
|↑ |↓ Ω g e -iωk t e -iωpt ki pj ki pj Qubit-Photon Interactions in Waveguides S ¸¨ ukr¨ u Ekin Kocabas ¸ Department of Electrical & Electronics Engineering Koc¸University, ˙ Istanbul [email protected] Mar 18, 2016 Kuantum Optik ve Bilis ¸imi Toplantısı Hacettepe ¨ Universitesi 1 / 35

Transcript of Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements...

Page 1: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

|↑〉|↓〉

Ωge−iωk t

e−iωpt

↓ ↓ ↓ ↓ ↓

kipj

ki ′pj ′

Qubit-Photon Interactions in Waveguides

Sukru Ekin Kocabas

Department of Electrical & Electronics EngineeringKoc University, Istanbul

[email protected]

Mar 18, 2016Kuantum Optik ve Bilisimi Toplantısı

Hacettepe Universitesi

1 / 35

Page 2: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Outline

Overview of Quantum Computing PlatformsRequirements from a Quantum ComputerCircuit QED ExamplesQuantum Optics Examples

Photon-Qubit Interactions in WaveguidesPerfect Single Photon MirrorsNonlinear Scattering of Two Photon PacketsResonance Fluorescence From a QubitModal Dispersion & Formation of Atom-Photon Bound ModesTwo-Photon Scattering in a Dispersive WaveguideMulti-Qubit Numerical Time Evolution StudiesPauli Z Gate Implementation

Summary

2 / 35

Page 3: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Why Quantum Information Processing?

I Algorithms exist that enable very fast computation usingentangled statesI Factoring large numbersI Searching big dataI Solving a large number of equations

I Secure communicationsI Simulate quantum many-body systems

3 / 35

Page 4: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Stages in Quantum Computing

I Lowest two levels: physical layerI Physical limits on coherence time → error correction1

I Use of quantum error correction to achieve quantum memorywith longer coherence than physical subsytems (not yet done)

1Devoret and Schoelkopf, Science 339, 1169–1174 (2013).4 / 35

Page 5: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Circuit QED Implementations

I Josephson junction basedqubits2

I Connections by microwavetransmission lines

I Cooled down to millikelvintemperatures

I Qubit energy levels and theircoupling to resonators arecontrolled with externalsignals

2Barends, Nature 508, 500–503 (2014).5 / 35

Page 6: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Formation of Gates

I Gates can be formed bytuning energy levels ofqubits3

I Or by external microwavepulses which excite certaintransitions among differentenergy levels4

3Egger and Wilhelm, Superconductor Science and Technology 27, 014001 (2014).4Fedorov, Nature 481, 170–172 (2012).

6 / 35

Page 7: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Commercial Quantum Annealing Processor: D-Wave

I Specialized system,implements quantumannealing only5

I Degree of ‘quantumness’being discussed

I Dec 8, 2015 “[Quantumannealing] is more than 108

times faster than simulatedannealing running on a singlecore.”6

I Example hardware graph of12× 12 units, each with 8qubits, some are defective

5King, (2015), arXiv:1508.05087.6Denchev, (2015), arXiv:1512.02206.

7 / 35

Page 8: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Quantum Optics Based on Nanophotonics

I Photonic crystal waveguidewith two supported modes7

I One mode used to trap ionsI Other mode used to

communicate with ion basedqubits

7Goban, Phys. Rev. Lett. 115, 063601 (2015).8 / 35

Page 9: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Quantum Optics Based on Plasmonics

I Plasmonic wedge waveguidecavity8

I Quantum dots are printed onthe wedge

I External laser light used topump quantum dot, emissioninto waveguide mode

8Kress, Nano Letters 15, 6267–6275 (2015).9 / 35

Page 10: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Quantum Optics Based on Photonic Crystals

I Defect line in a photoniccrystal forms a waveguide9

I Quantum dot grown onIn(Ga)As layer

I Input and output gratingsused to couple light in andout

9Sollner, Nat Nano 10, 775–778 (2015).10 / 35

Page 11: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Focus on Modeling of Physical Layer

I Gates do operations on‘stationary’ qubits10

I Results should be transferredby ‘flying’ qubits

I Interconnects are an integralpart of the design

I Remainder of the talk onrecent advances inunderstanding photon - qubitinteractions in waveguides

QEC: quantum error correctionFT: fault tolerant

10Van Meter and Horsman, Commun. ACM 56, 84–93 (2013).11 / 35

Page 12: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

System DetailsI Qubit positioned in an anti-node of the waveguide mode

|↑〉|↓〉

Ωge−iωk t

e−iωpt

I Multi-mode Jaynes-Cummings Hamiltonian under RWA anddipole approximation

H =

∫dkωka†kak +

Ω

2 σz︸ ︷︷ ︸H0

+ g∫

dk(σ+ak + a†kσ−)︸ ︷︷ ︸

V

I Linearized dispersion relation (for now)

12 / 35

Page 13: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Qubit as a Perfect Single Photon MirrorI Hamiltonian re-written in real spaceI Stationary state written as

|Ek〉 =

∫dx[φ†k,R(x)c†R(x) + φ

†k,L(x)c†L(x)

]|0〉+ ekσ

+|0〉

φ†k,R(x) = exp(ikx)θ(−x) + t exp(ikx)θ(x)

φ†k,L(x) =r exp(−ikx)θ(−x)

I Solve for H|Ek〉 = Ek |Ek〉I Transmission and reflection of single photon11

More than one qubit doable viatransfer matrix approach

11Shen and Fan, Opt. Lett. 30, 2001–2003 (2005).13 / 35

Page 14: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Non-Linearity by Two-PhotonsI Qubit cannot absorb two photons → non-linearityI Complicated stationary states (Bethe ansatz)12

I Formation of non-separable two-photon states

〈k2,Rp2,R |S|k1,Rp1,R〉 =tk1tp1 [δk1,k2δp1,p2 + δk1,p2δp1,k2 ]

+14Bδk1+p1,k2+p2

k1 + p1 − 2Ω starts as 0 in (a)and increases in (b)–(d)

12Shen and Fan, Physical Review A 76, 062709 (2007).14 / 35

Page 15: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

What is Resonance Fluorescence?

I Excite atoms with a laserlight (coherent state)

I Observe in an orthogonaldirection

I Control signals are incoherent states, important toanalyze qubit-coherent stateinteraction in waveguides

15 / 35

Page 16: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Mollow Triplets

I Light emitted from the atom hascoherent (i.e. same freq) andincoherent components (i.e.different freq)

I High excitation intensity → Rabioscillations → Mollow triplet

16 / 35

Page 17: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

g (2) Function in Resonance Fluorescence

I g (2)(τ) gives the probabilityof observing two photonswith delay τ at the detector

I Rabi oscillations at higherintensity → oscillations ing (2)

I Anti-bunching as seen fromg (2)(τ = 0) = 0

17 / 35

Page 18: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Resonance Fluorescence in Waveguides — SpectrumI Scattering of a coherent state with varying intensity from a

qubit13

I Input-output formalism14 used, much faster analysis

13Kocabas, Rephaeli, and Fan, Phys. Rev. A 85, 023817 (2012).14Fan, Kocabas, and Shen, Phys. Rev. A 82, 063821 (2010).

18 / 35

Page 19: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Resonance Fluorescence in Waveguides — g (2)

I Bunching for transmitted lightI Anti-bunching for reflected lightI Interference of radiated fields in forward/backward directions

19 / 35

Page 20: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Dispersive Modes of Waveguides — Tight Binding Case

|↑〉|↓〉

Ωge−iωk t

e−iωpt

I Multi-mode Jaynes-Cummings ModelI Tight-binding lattice dispersion ωk = −2J cos k, extension to

other types of dispersion also possible

H =

∫ π

−πdkωka†kak +

Ω

2 σz︸ ︷︷ ︸H0

+ g∫ π

−πdk(σ+ak + a†kσ

−)︸ ︷︷ ︸V

I Analyses will be made via the use of the resolvent

G(z) =1

z − H

20 / 35

Page 21: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Bound ModesI We need the following matrix elements of the resolvent

〈↑|G(z)|↑〉 ≡ G1(z) 〈k↓|G(z)|↑〉 ≡ G2(z ; k)

〈↑|G(z)|k↓〉 ≡ G3(z ; k) 〈p↓|G(z)|k↓〉 ≡ G4(z ; p, k)

I The poles of G1(z) define bound modes, i.e. polaritonic modes,of the system15

−20 0 20

−0.5

0

0.5

−4 −2 0 2 4

−4

−2

0

2

4ω+

ω−

g′ = 2

g′ = 1

Ω

ω±

0 10 20 300

0.2

0.4

0.6

0.8

1

4p2b

t

I There are two bound modes with energies ω± outside thefree-photon energy range (−2J , 2J)

|Ψ±〉 =√pb|↑〉+

√pbg∫ π

−πdk |k↓〉ω± + 2J cos k

15Lombardo, Ciccarello, and Palma, Phys. Rev. A 89, 053826 (2014).21 / 35

Page 22: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

One-Photon Scattering

I Scattering matrix elements can be calculated via T (z)

〈p↓|S|k↓〉 = 〈p|k〉 − 2πi δ(ωp − ωk) limη→0+

〈p↓|T (ωp − Ω/2 + iη)|k↓〉

I It is easy to get T (z) from G(z) via the following relationships

T (z) = V + VG(z)V and G(z) = G0(z) + G0(z)T (z)G0(z)

22 / 35

Page 23: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Feynman Diagram RepresentationI From the Lippmann-Schwinger equation

T (z) = V + VG0(z)T (z) we get

T (z)=V +VG0(z)V +VG0(z)VG0(z)V +VG0(z)VG0(z)VG0(z)V +...

I The series representation leads to the Feynman graphs16

v2↓ v1↑ ↓

kp

〈p↓|V G0V |k↓〉

+v4↓ v3↑ v2↓ v1↑ ↓

kp

〈p↓|V G0V G0V G0V |k↓〉

+v6↓ v5↑ v4↓ v3↑ v2↓ v1↑ ↓

kp

〈p↓|V G0V G0V G0V G0V G0V |k↓〉

+ . . .

≡v2↓ v1 ↓

kp

〈p↓|T |k↓〉

16Kocabas, Phys. Rev. A 93, 033829 (2016).23 / 35

Page 24: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Two-Photon Scattering in a Dispersive Waveguide

I Two-photon calculations require the following matrix elements

〈p↑|G(z)|k↑〉 ≡ G5(z; p, k) 〈p1p2↓|G(z)|k↑〉 ≡ G6(z; p1, p2, k)

〈p↑|G(z)|k1k2↓〉 ≡ G7(z; p, k1, k2) 〈p1p2↓|G(z)|k1k2↓〉 ≡ G8(z; p1, p2, k1, k2)

I G6,G7,G8 can be written in terms of G5I Analysis based on solvable Lee model of QFTI We derive an integral equation for G5

U(z ; p, k) =1

z − ωp − ωk+ g2

∫ π

−πdpi

U(z ; pi , k)

H(z ; pi )(z − ωp − ωpi )

I U function can be described in terms of Feynman graphs

24 / 35

Page 25: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

v2↓ v1↑ ↓

kipj

ki ′pj ′

〈p1p2↓|V G0V |k1k2↓〉

(a)

kipj

ki ′pj ′

〈p1p2↓|V G0V G0V G0V |k1k2↓〉

(b)

v4↓ v3↑ v2↓ v1↑ ↓

kipj

ki ′pj ′(c)

kipj

ki ′pj ′

〈p1p2↓|V G0V G0V G0V G0V G0V |k1k2↓〉

(d)

kipj

ki ′pj ′(e)

kipj

ki ′pj ′(f)

v6↓ v5↑ v4↓ v3↑ v2↓ v1↑ ↓

kipj

ki ′pj ′(g)

↓ ↓

kipj

ki ′pj ′

(a)

↓ ↓ ↓

kipj

ki ′pj ′

(b)

↓ ↓ ↓ ↓

kipj

ki ′pj ′

(c)

v

↓ ↓ ↓ ↓ ↓

kipj

ki ′pj ′

(d)

v1v2

U

kipj

ki ′pj ′

(e)

≡ (b) + (c)+ (d) + . . .

Two photons lead to manypossible diagrams

25 / 35

Page 26: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Test of Feynman Diagram Calculations — Bound Modes

100 200 300 400|↓〉

(a) ↓-sector

x

100 200 300 400|↑〉

1

TR

(b) ↑-sector

x

(c) g′ = 0.5

1− R − T

R

T

π6

π3

π2

2π3

5π6

0

0.5

1

k0

R,Tand1−R−T

(d) g′ = 1.0

U ≈ V0 + V1

U ≈ V0 + V1 + V2

π6

π3

π2

2π3

5π6

0

0.5

1

k0

I Free photon coming and scattering off of a bound modeI Much better agreement as number of diagrams increased for

large g

26 / 35

Page 27: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Test of Feynman Diagram Calculations — Free Modes

(a)

RR

LL RL

LR

−π −π

20 π

2

π−π

−π

2

0

π

2

π

p1

p2

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

(b)

−π −π

20 π

2

π−π

−π

2

0

π

2

π

p1

p2

I Two-photon scatteringcalculated with Feynmandiagrams (up) andindependent numericalcalculations (down)

I Initial state is two rightgoing photons, final state isplotted on the left

I R: right, L: left, RR: tworight going photons

27 / 35

Page 28: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Numerical Time Evolution Studies

Developed a numerical algorithm to evaluate the time evolution ofmulti-qubit systems with the Hamiltonian

H = −JL−1∑i=1

(a†i+1ai + a†i ai+1

)+

n∑s=1

Ωs2 σzs +

n∑s=1

gs(σ+

s axs + a†xsσ−s)

x1

Ω1

x2

Ω2

x3

Ω3

J J J J J J J J J J

g1 g2 g3

for an arbitrary initial state.17

17Kocabas, (2016), arXiv:1603.02920.28 / 35

Page 29: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Time Evolution of |↑↑〉 State

I Analytic calculations quicklyget quite complicated

I Multi-qubit, multi-photoncalculations are of interestfor gate design

I Numerical time evolution viaKrylov-subspace method

I |Ψ(t)〉 = e−iHt |↑↑〉I Excitation of a two-qubit

bound mode, with abouncing photon betweenqubits

(a)

50 100 150 200 2500

20

40

60

x

t

(b) |〈↑↑|Ψ〉|2

〈Ψ|σ+1 σ−1 |Ψ〉

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

t

Probability

29 / 35

Page 30: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Bound States In the Continuum (BIC)

I Similar to the single qubit case, multi qubit systems supportbound modes, too.18

I Unlike the single qubit case, some multi qubit bound states arewithin the propagating photon energy continuum range → BIC

I For two qubits we have19

|Ψ±ne,o〉 = N[|↑↓〉 ± |↓↑〉+

∑x

(−i)g eik?|x+ R2 | ± eik?|x−R

2 |√4J2 − Ω2

|x↓↓〉]

N =1√2

1√1 + g2R

4J2−Ω2

,

18Calajo, (2015), arXiv:1512.04946.19Kocabas, (2016), arXiv:1603.02920.

30 / 35

Page 31: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

BIC ShapesI Condition for BIC is 1± eik?R = 0 and Ω = −2J cos k?I For g 1 we have N 2 ≈ 0.5

180 185 190 195 200 205 210-0.15

-0.1

-0.05

0

0.05

0.1

0.15R=9 Order=1 k?=0.22: +=-1.53 7g=0.1 N2=0.474 O

180 185 190 195 200 205 210-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08R=9 Order=2 k?=0.44: +=-0.35 7g=0.1 N2=0.489 O

180 185 190 195 200 205 210-0.1

-0.05

0

0.05

0.1R=9 Order=3 k?=0.67: +=1.00 7g=0.1 N2=0.485 O

180 185 190 195 200 205 210-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2R=9 Order=4 k?=0.89: +=1.88 7g=0.1 N2=0.419 O

31 / 35

Page 32: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

DFS Based Logical Qubits

I One can associate the BIC with decoherence-free states20 fromthe Dicke model

I There are quantum gate designs that make use ofdecoherence-free states (DFS)21

I Two qubits make one logical qubit with

|0〉 ≡ |↓↓〉

|1〉 ≡ |Ψ−no〉 ≈1√2

(|↑↓〉 − |↓↑〉)

20Chen, Yang, and An, (2016), arXiv:1601.02303.21Paulisch, Kimble, and Gonzalez-Tudela, (2015), arXiv:1512.04803.

32 / 35

Page 33: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Pauli (-Z) GateI We use four physical qubits

to get two logical qubitsI Initial state is

(|10〉+ |01〉)/√

2I We apply a π-pulse to arrive

at the final state(|10〉 − |01〉)/

√2

I ∆H12 = ∆2 (σz1 + σz2)

I (set 1) R = 4, g = 0.1, no = 1(set 2) R = 4, g = 0.5, no = 1(set 3) R = 7, g = 0.5, no = 1(set 4) R = 7, g = 0.5, no = 3

π-Pulse

Ω(t) Ω(t) Ω Ω

1 2 3 4

Waveguide

LogicalQubit

LogicalQubit

(a)

0 10 70 1500

∆H12

HC(t)

(b) 1

2

3

4

0 10 30 50 70 90 110 130 1500

0.5

1

t

Fid

elit

y(c)

12

3

4

t increases

−1 0 1

0

1

Re

Im

33 / 35

Page 34: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Summary

I Waveguide integrated qubits are now technologically possibleI Rich collection of effects arising from photon-qubit interactions

in waveguidesI Particularly when waveguide dispersion is taken into account

I OutlookI Waveguide + qubits system is a promising simulation platform

for many-body physics22

I It seems also feasible to investigate topological order withsynthetic dimensions excited in waveguide + qubits23

22Douglas, Nat Photon 9, 326–331 (2015).23Graß, Phys. Rev. A 91, 063612 (2015).

34 / 35

Page 35: Qubit-Photon Interactions in Waveguides · Overview of Quantum Computing Platforms Requirements from a Quantum Computer Circuit QED Examples Quantum Optics Examples Photon-Qubit Interactions

Thank you for your attention.

Happy to share the slides if you are interested, email me [email protected] to get a copy.

35 / 35