Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics...

22
Quark-Gluon Plasma Sijbo-Jan Holtman

Transcript of Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics...

Page 1: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Quark-Gluon Plasma

Sijbo-Jan Holtman

Page 2: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Overview

• Introduction

• Phases of nuclear matter

• Thermodynamics

• Experiments

• Conclusion

Page 3: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

IntroductionResearch of quark-gluon plasma important to understand early universe and center of neutron stars

phase transition!

Page 4: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

The Phases of Nuclear matter• Normal nuclei : density ρ0 , temperature T=0

• Gas: peripheral collision between gold nuclei

Page 5: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Phases of Nuclear matter

• Central collision • N + N = Δ + N , new degree of freedom • dynamical equilibrium between πN and Δ • Boltzmann distribution

dN / dE = cst e -E / kT (E is kinetic energy)• kT< 150 MeV

Hadronic matter

Page 6: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Phases of nuclear matter

Central collision between gold nuclei

Page 7: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Phases of nuclear matterQuark-gluon plasma (QGP) or Quark soup

• ρ0 = (6 fm3) -1 volume of nucleon is 10 / ρ0

• For T > 200 MeV enough energy for nucleon-nucleon interaction to increase collision frequency very much

• The disintegration of nucleons and pions into quarks and gluons

Hadron gas

QGP

Page 8: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Phases of nuclear matterPhase diagram

Big Bang

Normal nuclear matter

Neutron stars

Page 9: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Thermodynamics

Derivation of the equation of state

• Gluons, u and d quarks massless

• all interactions neglected

• degrees of freedom Gluons: Ng = 2(spin) × 8(colour) = 16 Quarks: Nq =

2(spin) × 3(colour) × 2(flavour) = 12• energy density in each degree of freedom

Page 10: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Thermodynamics

εq = (dp) p (e(βp-μ)+1) -1 x= (βp-μ)

= T4 /2π2 dx (x+βμ)3 (e x+1) -1

εq = (dp) p (e(βp+μ)+1) -1 x= (βp+μ)

= T4 /2π2 dx (x-βμ)3 (e x+1) -1

εq + εq = 7π4 T4/120 + μ2 T4/4 + μ4/8 π2

Quarks and anti-quarks

εg = (dp)p(eβp-1) -1= π2T4 / 30

Gluons

Page 11: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Thermodynamics

The total energy density for μ=0 (same amount of quarks as anti-quarks)

ε = 16 εg + 12 (εq + εq) = (T/160 MeV)4 GeV/fm3

Compare with

εnuc = 125 MeV/fm3 ε of nuclear matter

εN=300-500 MeV/fm3 ε inside nucleon

Page 12: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Thermodynamics

Determining a physically realistic μ with the baryonic density

nb = 1/3 12 (nq – nq); nq = (dp) (e(βp-μ)+1) -1

nb = 2 μT2/3 + 2μ3/3π2

Consequences:

• High temperature μ ~ T-2/3

• nb = 4/3 dε/dμ (also valid with interactions)

Page 13: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

ThermodynamicsIn the same way

P=1/3 ε; s = 1/3 dε/dT

Range of stability of QGP:

P can balance B the external vacuum pressure

B = π2Tc4[(37/90-11αs/9π)+(1-2αs/π)(xc

2+1/2 xc4)]

μ c=xcπTc

ε = (T/160 MeV)4 GeV/fm3

εc = ½-2 GeV/fm3

Page 14: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Thermodynamics

Phase diagram according to the calculation

Only 10-15 percent difference between interaction included and interaction excluded

Page 15: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

• J/Ψ suppression because colour screening hinders the quarks from binding

• Strangeness and charm enhancement

Perturbative Vacuum

cc

Color Screening

cc

Page 16: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

Jet quenching

• Hard scatterings (HS) produce jets of particles

• In a colour deconfined medium the partons strongly interact and loose energy by gluon radiation

• HS near the surface can give a jet in one direction, while the other side is quenched

Page 17: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

Search for QGP done at Relativistic Heavy Ion Collider (RHIC) on Long Island, New York

Page 18: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

ExperimentsPHENIX: Pionering High Energy Nuclear Interaction

eXperiment

Au+Au till 100 GeV, d+Au and p+p till 250 GeV

Page 19: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

• Au+d similar to peripheral Au+Au

Escaping Jet“Near Side”

Lost Jet“Away Side”

d+Aud+Au Au+AuAu+Au

NearNear Away Away

Page 20: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

• Au+d similar to peripheral Au+Au• Away side strongly suppressed in Au+Au

Escaping Jet“Near Side”

Lost Jet“Away Side”

NearNear Away Away

d+Aud+Au Au+AuAu+Au

Page 21: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Experiments

Central collision simulation

Page 22: Quark-Gluon Plasma Sijbo-Jan Holtman. Overview Introduction Phases of nuclear matter Thermodynamics Experiments Conclusion.

Conclusion

• QGP not yet experimentally verified

• Problems remain: T=0, high ρ (neutron stars) and high T, low ρ experimentally difficult to realize