Project_hydrodynamic Simulation of Wind Induced Flow in a Channel

download Project_hydrodynamic Simulation of Wind Induced Flow in a Channel

of 166

description

Μεταπτυχιακή Διατριβή

Transcript of Project_hydrodynamic Simulation of Wind Induced Flow in a Channel

  • ..

    .

    .

    .

    2010

  • ii

    ,

  • ,

    , . . , 2008

    2010.

    ,

    . .

    .

    .

    .

    , ..

    , .

    , . ,

    . , ,

    .

    , ...

  • iv

    , .

    MIKE 3

    Flow Model F.M. (Hydrodynamic Module)

    ,

    ,

    ,

    .

    .

    ,

    , .

    Navier Stokes.

    , Couette,

    . Eifler & al. (1989)

    Couette ,

    .

    3 Flow Model

    F.M. , .

    4

    .

    (wall functions) k .

    ,

    , .

  • ,

    ,

    , .

    Eifler et al (1989).

    ,

    ,

    .

    5 4,

    ,

    ,

    .

    .

    6

    , k, ( )

    ,

    . , k

    , ,

    .

    k ,

    .

    ,

    .

    Couette

    .

    k

    o

    Couette.

  • vi

    ......................................................................................................................... iii .......................................................................................................................... iv .............................................................................................. ix ............................................................................................... xiv .......................................................................................................................... 15 1 : ............................................................................................. 22

    1.1 ........................................................ 22 1.2 ............................... 24 1.3 BOUSSINESQ ........................................................................ 25 1.4 ROSSBY .................................................................. 27

    2 ................................................................................................................................... 28

    2.1 COUETTE POISEUILLE ..................................................................................... 28 2.2 ........................................................................................ 35 2.3 - EIFLER. COUETTE ....................................................................................................... 38 2.4 EIFLER .......................................................................................................... 46

    3 ....................... 49

    3.1 ...................................................................... 49 3.2 ......................................... 49

    3.2.1 . .............................................................................................. 50 3.2.2 ............ 52 3.2.3 ...................................... 56

    3.2.3.1 .................................. 57 3.2.3.2 .............................. 57

    3.3 .................................................. 59 3.3.1 ..................................................... 59 3.3.2 ............................... 60

    3.3.3 ........................................................................................ 62 3.3.4 CFL .......................................................................... 63 3.3.5 .............................................. 63

    4 .......................................................................... 65

    4.1 ............................................................... 65

  • 4.1.1 .......................................................... 65 4.1.2 .......................................................................... 66

    4.1.2.1 . .... 66 4.1.2.2 ..................... 68 4.1.2.3 ....................................................................... 69 4.1.2.4 ................................................................. 69 4.1.2.5 ......................................... 70 4.1.2.7 ..................................... 79

    4.2 ................................ 82 4.2.1 . ................................................................................................................. 82 4.2.2 .................................................................... 85 4.2.3 .......................................... 90 4.2.4 u Eifler & al. (1989) ......................................................................... 93 4.2.5 , ............................................... 94 4.2.6 ................. 96 4.2.7 Eifler & al. - : - ............................................................................ 98

    5 ........................................................................................... 100

    5.1 ............................................................................................................. 100 5.2 ................................ 101 5.3 ........................................................ 104

    5.3.1 ............................. 105 5.3.2 ............... 107 5.3.3 ................ 114 5.3.4 , Couette ...................................... 116 5.3.5 - Eifler & al. (1989) - ............................................................................................................. 118 5.3.6 ........................... 120 5.3.7 - .............................................. 122

  • viii

    6 ................................................................. 124

    6.1 ............................................................................................................. 124 6.2 A - ....................................................................................................... 124 6.3 M k, , ( NEUMANN) ....................................................... 125 6.4 ....................................... 126

    6.4.1 ................................................. 126 6.4.2 .. 127 , k , ........... 127 6.4.3 ................................. 128 6.4.4 ........................ 132 6.4.5 ................................................................................................................ 133

    6.5 k, ......................................................................................................................... 135

    6.5.1 ....................................................... 136 6.5.2 , ......................................................... 138 Eifler & al. (1989) ............. 140

    6.6 k, , ................................... 143

    6.6.1 .................................................................. 143 6.6.2 Eifler & al. (1989) ............. 148

    6.7 . - ...................... 150

    .................................................................................... 161

  • 1.1 .................... 23 1.2 , (x,t), b(x) ............................................... 25 2.1 Couette Poiseuille ............................................................. 32 2.2 Couette Poiseuille ...................................... 32 2.3 E Couette ....... 33 2.4 , Nezu & Nakagawa (1993) ........................................................................................................... 38 2.5 (Eifler & al, 1989) .... 44 2.6 (Eifler & al, 1989) ............................................................................................................................................. 46 2.7 (Eifler & al, 1989) ... 46 3.1 (Drago, Iovenitti, 2000) ............................................................................................................................ 54 3.2 : sigma z (DHI Software, Hydrodynamic Module, User Guide, 2007) ...... 54 3.3 (DHI, 3 F, 2004) ....................................................... 60 3.4 . 12 .................... 61 4.1 ............................................................. 65 4.2 ...................................................................................... 67 4.3 . O y, ................................................................ 71 4.4 . . ....................... 72 4.5 DNS (Direct Numerical Simulations) Kim et al.(1987): Re = 5600, Re = 13750

    :

    yuU . Pope (2000) ................... 76

    4.6 , Wei and Willmarth (1989): Re = 2970, Re = 14914, Re = 22776 Re = 39582.

    uU ....................................................................................................................

    ................................................................................................................................................................... 4.7 .................................................. 81 4.8 (50, 1000) o (layer 8) ......................................................................... 83 4.9 (50, 1000) o (layer 8) .............................. 84 4.10 (50, 1000) o (layer 8) ............................ 84 4.11 . u 100 m, . (50, y), 1000 y 0 ........................... 86 4.12 . u u (0, 1000) (100, 1000) 10 m ......................................... 86

    ...................................................................................................................................................................

  • x

    4.13 k o (layer 8) ....................................................................................................... 87 4.14 u o (layer 8) .................................................................................................................. 87 4.15 . , u , MIKE 3 HD Flow model F. M. () H . () ................................................................................................................ 88 4.16 , u. ................................................ 89 4.17 , - . .......................... 89 4.18 ( x

    max) .... 90

    4.19 ........................................................................................................ 91 4.20 , ........................................................................................................ 92 4.21 u MIKE 3 HD (Flow Model) Eifler & al. . (50,0) ....... 94 4.22 u MIKE 3 HD (Flow del FM) ............................................................................................................................................ 95 4.23 , ................................................................................................... 96 4.24 ............................................................................................. 97 4.25 u Eifler & al. (1989) ............................................................ 99 p ...................................................................................................................................................... 5.1 ........................... 104 5.2 u (50, 1000) (layer 35) .................................. 105 5.3 z (50, 1000) (layer 35) ......................................................................................................................................... 5.4 (50, 1000) (layer 35) ........ 106 5.5 u (50, 1800) , (50, 1200). T 200 m ..................................................................................... 108 5.6 . u

    100 m, . (50, y), 1000 y 0 5.7 . u (0, 1000) (100, 1000) 10 m .................................................................. 109 5.8 (layer 35) .................................................................................. 109 5.9 u (layer 35) ..................................................................................................................... 110 5.10 , . ................................................................................................................ 111

  • 5.11 . ........................ 112 u, 5.12 , 2D Couette .................................................... 112 5.13 , w .................................................................................................................................. 112 5.14 . . . 5.15 ......................................... 115 5.16 u 3 .............................................. 117 5.17

    t

    3 .............................................. 117 .............................................................................................................................................................................

    5.18 , ................. 118 5.19 u MIKE 3 HD (Flow Model FM) Eifler & al. 70 .................... 119 5.20 u Eifler et al. (1989) .......................................................... 119

    5.21 t 121

    MIKE 3 HD (Flow Model FM) Eifler & al. (1989) .............................................................................................................................. 121 5.22 .......................................................................................................................... 123 6.1 : () () , (50, 0), .......................................................................................... 127 6.2 k, ............................................................................................................. 129 6.3 . k, k, ................................................................................................... 130 6.4 . k, k, ............................................. 130 6.5 , .................... 133 6.6 u 1 10 , (50, 0) .............................................................................................................. 134

    6.7 t

    1 10 (50, 0) ............................................................................................................. 134 6.8 u (50, 1000) (layer 35) ................................. 136

  • xii

    6.9 z, (50, 1000) (layer 35) .............................................................................................................................................. 138 6.10 , k (50, 1000) (layer 35) ...... 137 6.11 . u (0, 1000) (100, 1000), 10 m .............................................................. 138 6.12 w ................................................................................................................................. 138 6.13 u .............................................................................. 139 6.14 . u 100 m, . (50, y), 1000 y 0 ........................................ 140 6.15 6.16 u MIKE 3 HD (Flow Model F.M) Eifler & al. (1989) ................................................................................................. 141 6.17 , : () u () , 3 Flow Model F.M ......................................................... (50, 1000), (layer 35) 6.18 z, (50, 1000) (layer 35) ...... 145 6.19 , k (50, 1000) (layer 35) ...... 145 6.20 : () , 20 m, () , () .................................................................................. 147 6.21 . ............................................................................ 147 6.22 u MIKE 3 HD (Flow Model FM) Eifler & al (1989) ................................................................................................................... 148 6.23 , : u () (), MIKE 3 HD Flow Model F. M. .............................................................................. 149 6.24 k, ........................................................................................................................................... 151 6.25 u, k, . (layer 35) 50 m............................................................................ 152 6.26 , k, k, . (layer 35) 50 m............................................................................ 152

    6.27 , t

    v ,

    k, . - (layer 35) 50 m ............................................................................... .153 6.28 (50, 2000) (2000, 1400) (2000, 1400), , (), (), () ............................................................................................................................... 154 6.29 , ............................................ 156 6.30 .............. 157 u, : (), (), () k, ......................................................................................... 157

  • 6.31 , . ........................ 160

  • xiv

    2.1 Couette, Gretler & Meile (1997) ............................ 34 2.2 Couette ....................................................... 43 3.1 k (Rodi, 1984) ........................................................... 58 4.1 . ......................................................... 81 4.2 u. ............................................................................ 89 4.3 92 4.4 u. ....................................................................................... 95 4.5 ................... 97 4.6 ........................................................ 99 5.1 ................... 103 5.2 ............................................................................................................................. 114 5.3 ........................................................ 120 6.1 ............................................................................................................................... 129 6.2 . ......................... 142 6.3 . ......................... 149 6.4 - k, ................................................................................ 151

  • 15

    .

    . O -

    , , ,

    ,

    . -

    .

    ,

    , .

    .

    ,

    , 50 200 (Ocean

    Circulation, EESC 2100, Spring 2007). ,

    , .

    ,

    .

    .

    ,

    , , ,

    ,

    .

    .

    ,

  • 16

    ,

    ,

    . ,

    .

    .

    ,

    (wind setup),

    ,

    .

    .

    ,

    ,

    . ,

    .

    .

    ,

    . ,

    Officer (Physical Oceanography, 1976)

    .

    Heaps (1984) Tsanis (1989),

    u. , Eifler, Kupusovic &

    Schrimpf o 1989

    Couette,

    .

  • 17

    ,

    Baines & Knapp (1965), Koutitas

    & O Connor (1980), Tsuruya & al. (1985). ydin &

    Leutheusser (1979) Tsanis & Leutheusser (1987)

    . , ydin & Leutheusser

    Couette

    ,

    .

    .

    ,

    ,

    .

    , Davies et al. (2001)

    .

    ,

    ,

    .

    (2D) , Leendertse (1967) Hunter (1980),

    .

    , , ,

    ,

    , Koutitas

    Gousidou - Koutitas (1986), Schwab & al. (1989), Simons & Schertzer (1989)

  • 18

    Wang & O Connor (1975). 2D -

    (quasi 3D)

    ,

    .

    T (3D)

    Reynolds averaged Navier - Stokes

    ,

    .

    ,

    () ,

    .

    Wu & Tsanis (1995) Gting &

    Hutter (1998). Koutitas Gousidou - Koutitas (1986), Schwab & al. (1989),

    Simons & Schertzer (1989) Wang & O Connor (1975)

    , .

    ,

    ,

    , . ,

    Shankar & al. (1996), Drago & Iovenitti (1999), bualtayef & al.

    (2007).

    ,

    Davies (1985), Davies & Hall (2000), erman & al. (2000), Sanay &

    Valle - Levinson (2005). Davies (1985)

    , . O Berman & al.

    (2000) Elat

    POM Sanay & Valle Levinson (2005)

  • 19

    ROMS

    : ,

    . T

    ,

    .

    ,

    .

    .

    ,

    ,

    (. . ), . .

    , G. T. Csanady

    (Circulation in the Coastal Ocean, 1973)

    .

    ,

    , .

    ,

    .

    .

    ,

    ,

    ,

    , , . . . .

    ( )

    . 10

  • 20

    100 ,

    ,

    , . , ,

    .

    , ,

    , ,

    ,

    .

    , , ,

    .

    .

    .

    .

    ,

    ,

    . ,

    .

    .

    ,

    .

    ,

    . ,

    .

  • 21

    ,

    - , Couette.

    . ,

    ,

    Couette.

  • 1 :

    22

    1

    :

    1.1

    , ,

    .

    , .

    . ,

    ,

    ,

    , : 1L

    D W ~ U

    L

    DU , U, W

    . ,

    , ( Navier - Stokes

    ) .

    Navier - Stokes

    :

    z

    u

    zy

    u

    yx

    u

    xx

    p

    1fv

    Dt

    Duzyx (1.1)

    z

    v

    zy

    v

    yx

    v

    xy

    p

    1fu

    Dt

    Dvzyx (1.2)

    gz

    p

    1

    0 (1.3)

    f sin2 , o

    Coriolis. ,

  • 1 :

    23

    , 1.1, z .

    - ,

    . 2.

    :

    0

    z

    w

    y

    v

    x

    u (1.4)

    To (1.1) - (1.4) , ,

    , , Navier - Stokes,

    Boussinesq ,

    , .

    1.1

  • 1 :

    24

    1.2

    ,

    ,

    z b + , z = (x, t) + b (. 1.2).

    :

    p a (x,y,t) - p(x,y,z,t) = - g (b + h + - z) (1.5)

    p a : ,

    , = h + , h

    .

    (

    ). (1.5)

    :

    x: x

    p

    x

    g

    x

    p

    a

    11 (1.6)

    y: y

    p

    y

    g

    y

    p

    a

    11 (1.7)

    b + h :

    0)()(

    y

    hb

    x

    hb (1.8)

    :

    x:

    z

    u

    zx

    p

    x

    gfv

    z

    uw

    y

    uv

    x

    uu

    t

    uz

    a1 (1.9)

    y: z

    uw

    y

    uv

    x

    uu

    t

    u

    z

    v

    zy

    p

    y

    gfu z

    a1 (1.10)

  • 1 :

    25

    x

    1.2 , (x,t), b(x)

    1.3 BOUSSINESQ

    Boussinesq

    . ,

    Reynolds

    .

    1887 Boussinesq :

    - iji

    j

    j

    i

    ijji kx

    u

    x

    u'u'u

    3

    2

    (1.11)

    ij Kronecker ( ij = 1 j = i, ). To

    Boussinesq k

    :

    2322212

    1'u'u'uk (1.12)

    ijk)3/2( (1.10)

    . (1.10) :

    z

  • 1 :

    26

    1

    12

    1 2x

    uv'u t

    2

    22

    2 2x

    uv'u t

    3

    32

    3 2x

    uv'u t

    , : 0

    i

    i

    x

    u.

    (. 1.11). ,

    (1.10) (1.11).

    Reynolds (1.10)

    Reynolds

    averaged Navier - Stokes.

    (1.10) Newton,

    . ij

    ( )

    .

    .

    , v

    .

    u . tv

    ,

    . , ,

    .

    ,

    :

    dz

    ud zzx (1.13)

    z u

    .

    , :

    j

    i

    i

    jijij

    x

    u

    x

    u p , ij, ij Kronecker. i, j

    1 3.

  • 1 :

    27

    1.4 ROSSBY

    Rossby

    Coriolis

    .

    U

    L.

    :

    y

    uv

    x

    uu

    L

    U 2 (1.14)

    H Coriolis :

    fu U (1.15a)

    fv U (1.15b)

    , Coriolis

    :

    U

    L/U 2

    L

    U (1.16)

    O R 0 = L

    U Rossby

    :

    R 0 = U/L

    1/ (1.17)

    : /1 : U/L .

    Rossby (R 0 > 1),

    ,

    . Rossby

    (R 0 < 1),

    . , ,

    Coriolis.

  • 2

    28

    2

    2.1

    COUETTE POISEUILLE

    Couette ( Couette)

    . ,

    , , Reynolds.

    Couette (

    ) (pressure gradient).

    , ,

    ,

    Couette. E

    Poiseuille,

    , ,

    (favourable or adverse).

    .

    Couette Poiseuille

    .

    , .

    ,

    ( ),

    .

    .

    Couette Poiseuille

    , .

  • 2

    29

    Couette (1890),

    , Couette

    . Burgers (1922)

    Heisenberg (1922) Couette Von

    Karman (1937)

    . Poiseuille . .

    Hussain & Reynolds (1975),

    (. . Reynolds 1976),

    Poiseuille

    , .

    2.1,

    Couette Poiseuille .

    ,

    Couette 1950

    . Reichardt (1959) Robertson (1959)

    , . Chue (1969)

    Couette, Robertson & Johnson

    (1970) .

    Leutheusser & Chu (1971)

    Couette Reynolds

    . Aydin & Leutheusser (1979)

    Couette, ,

    .

    Robertson & Johnson

    (1970), El Telbany & Reynolds (1980, 1981, 1982), Aydin & Leutheusser (1987)

    Tillmark & Alfredsson (1993).

    ,

    . ,

    .

  • 2

    30

    Couette

    . Reichardt (1956, 1959)

    Reynolds. O Robertson (1959)

    . Szablewski (1968)

    Couette, Poiseuille

    . ,

    Reichardt Reynolds.

    O Korkegi & Briggs (1968, 1970) Couette

    Robertson. Chue & McDonald (1970)

    , Chue. O

    Hoffmeister (1976)

    Reichardt.

    ,

    Reynolds

    . , 1978 Lund & Bush ,

    Reynolds

    Couette Poiseuille.

    Lund & Bush Reynolds

    . ,

    Poiseuille Couette Poiseuille (

    2.1).

    Couette, Poiseuille,

    Couette Poiseuille,

    ,

    . Couette Poiseuille

    ,

  • 2

    31

    .

    Couette - Poiseuille.

    Tsanis & Leutheusser (1987)

    ,

    Couette Poiseuille. , ,

    ,

    .

    Afzal (1993)

    (open equations of mean motion). ,

    ,

    ,

    (overlapping regions). Couette

    Gersten (1985a, b, 1987) ifler

    & al. (1989),

    . H

    Eifler & al. (1989) ,

    .

    (lubrication theory),

    Couette - Poiseuille,

    . Constantinescu (1959)

    Prandl .

    Constantinescu (1959) Ng (1964).

    (. . Elrod

  • 2

    32

    & Ng, 1967), Prandl

    (Ho & Vohr, 1974). (DNS)

    . Reynolds,

    , ,

    . (Direct Numerical Simulations)

    Couette Andersson & al. (1993), Kristoffersen et al.

    (1993), Kuroda et al. (1995).

    2.1 Couette Poiseuille

    ()

    () 2.2 Couette Poiseuille

  • 2

    33

    2.3 E Couette

    (a) Reichardt (1956) (b) Reichardt (1959), Robertson (1959), Robertson & Johnson (1970) (c) Leutheusser & Chu (1971) (d) Aydin & Leutheusser (1979)

    Couette

    . , Poiseuille

    .

    Gretler & Meile

    (1997).

    ,

  • 2

    34

    . , Couette

    Poiseuille, (

    ) ,

    (high stress wall)

    (low stress wall).

    . Couette - Poiseuille

    (2.1) ( . 2.1).

    (. Lund & Bush, 1978):

    dx

    dp

    u

    Hsign

    1

    w

    w

    w0

    21

    1

    )(1

    dy

    d

    u

    Hsign

    1

    w

    21)( (2.1)

    , 0, 1

    .

    : 0 2.

    Couette ( = 0) Poiseuille ( = 1). T

    2.1. bibi uusign /)/( ,

    , Eifler & al.

    .

    2.1 Couette, Gretler & Meile (1997)

  • 2

    35

    Couette.

    ( ),

    Couette. ,

    Couette

    Couette Poiseuille.

    .

    ,

    :

    ,

    ,

    Couette. .

    , (. .

    - , , ),

    ,

    ,

    .

    , ,

    .

    (

    ),

    Couette. ,

    Couette Eifler & al (1989).

    2.2

    1950 .

    ,

  • 2

    36

    (spanwise) (Kline & al, 1967, Smith & Metzler, 1983).

    (streamwise)

    , Johanson & al., 1987).

    (outer layer)

    , .

    1950 - 1960

    .

    , ,

    (laminar layer).

    (low - speed streaks)

    . ( ;)

    (gradual lift - up),

    (ejection),

    (bursting phenomenon). Hama ( Corrsin, 1957)

    . , ,

    , .

    Blackwelder & Eckelman (1979)

    (bursting phenomenon).

    . .

    (sweep)

    ,

    .

    2.4 Nezu & Nakagawa (1993). H

    ,

    . Kline & Rundstadler (1959)

    , Kline & al. (1967). ,

  • 2

    37

    , ,

    .

    Kline & al. (1967)

    , (

    ). ,

    ,

    . ,

    , ,

    , .

    ,

    y

    (layers)

    .

    .

    .

    ,

    . ,

    , Jimnez & Moin, 1991

    .

  • 2

    38

    2.4 , Nezu & Nakagawa (1993)

    2.3 - EIFLER -

    COUETTE

    ,

    A ( )

    ,

    1.3. , ,

    RANS, ,

    - , RANS.

    ,

    .

    ,

    - ( Eifler & al,

    1989). (2.2):

    A = )(z'A .

  • 2

    39

    Couette,

    :

    x

    P

    z'

    uz'

    '

    1)(

    z (2.2)

    (2.2) :

    z'x

    P

    z'

    uz'A

    1)( + Const (2.3)

    To (2.3)

    z' :

    - : i

    - : b (2.4)

    :

    (2.5)

    : 1.3

    oussinesq, xz :

    z

    uzA zx

    )( ,

    x

    ,

    y

    . , , (2.3) :

    'zx

    P xz'

    + Const. , z :

    0Hx

    P bi

    . O, (2.5)

    o o:

    (2.6)

    (2.7)

    bibi uusign /)/( (2.8)

    ( i b , : i = b )

    u bb

    H

    x

    P bi

    u ii

  • 2

    40

    :

    A = *b

    Hu

    A (2.9)

    bu

    uu (2.10)

    :

    H

    'zu (2.11)

    = 0 = 1 , (2.3) :

    A

    Z-1-1

    Z

    u )( (2.12)

    H A :

    A =

    Z1

    Z1

    1

    2Z-11Z1Z

    2

    (2.13)

    :

    = f-1 (2.14)

    = f-1 (2.15)

    1) 1 : f = 1

    14

    1 =

    23

    1

    (2.16)

    2) 1 : f =

    1

    141

    1

    =

    23

    1

    (2.17)

    Von Karman 0.407.

    (2.12) A (2.13) :

    u = ZarctggZ)In(1InZ

    21111

    ZIngZIng 121112

    1 2 + C (2.18)

    :

    ff

    g

    14

    112

    (2.19)

    :

  • 2

    41

    bu

    u = InZ

    1+ . (2.20)

    iu

    u = Z)-In(1

    1+ . (2.21)

    .

    (2.18)

    . , ,

    ,

    .

    ,

    :

    ou

    u =

    ou

    z- 0.34

    2

    ou

    z+0.039

    3

    ou

    z (2.22)

    :

    0 z 30

    ou 14.7, z

    :

    uz'z

    *

    b

    (b) (2.23)

    -

    uz'-Hz

    *

    i

    (i)

    (2.24)

    - , .

    (b)z

    (i)z :

    (b)z = bReZ

    (i)z = bReZ1 (2.25)

    : bRe =

    Hu*b (2.26)

  • 2

    42

    ,

    (2.18) (2.22) :

    bb Re/Z 30

    )/(Re301 b iZ (2. 27)

    , u ( surfaceu - u ) 14.06 (2.22)

    z = 30.

    , :

    - o

    - i

    - x

    P

    (2.5) (2.26)

    , bRe .

    ,

    : bRe

    bZ iZ . bZZ (2.22).

    ib ZZZ (2.18); C

    bZZ , : u = 14.06. iZZ

    . (2.22),

    (2.18) iZZ .

    2.5, 2.6

    . 2.5

    2.6

    .

    ( - ,

    - ).

    . 2.7

    . .

  • 2

    43

    ,

    .

    Couette, b = 0.04 2N/m , = 10 m 2

    +2.

    2.2 Couette

    -2 -1.5 -1 0 +1 +2

    b [2N/m ] -0.16 -0.09 -0.04 0 +0.04 +0.16

    x

    P

    [ Pa/m ]

    -0.020 -0.013 -0.008 -0.004 0 +0.012

    : 0.16 2N/m

    10 m/sec .

  • 2

    44

    2.5 (Eifler & al, 1989)

  • 2

    45

    2.6 (Eifler & al, 1989)

  • 2

    46

    2.7 (Eifler & al, 1989)

    2.4

    EIFLER

    (2.5) :

    (2.5)

    1.2 :

    x: x

    p

    1

    x

    g

    x

    p

    1 a

    (1.6)

    (2.5) :

    H

    x

    p

    x

    g bia

    (.

    ) :

    H

    x

    P bi

  • 2

    47

    gH

    x

    bi

    (2.28)

    x

    .

    710

    10 m

    bi 31081.9 . ,

    . ,

    (

    , *s

    ) .

    2.8 ( 00 QQQ /) ,

    .

    ,

    b . , x

    ib ,

    0

    x

    ib .

    ( ) ,

    .

  • 2

    48

    0.0 2.0x10-7

    4.0x10-7

    6.0x10-7

    8.0x10-7

    1.0x10-6

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    (Q-Q

    0)/

    Q0 x

    100

    Surface slope

    2.8 A ,

  • 3

    49

    3

    3.1

    3 Flexible Mesh (Hydrodynamic Module)

    DHI Water & Environment

    (flexible),

    , ,

    . ,

    .

    ,

    , , ,

    - .

    .

    .

    3 Flow

    Model (DHI, Water and Environment, Hydrodynamic Module, Scienific Documentation,

    2007).

    3.2

    Reynolds Averaged Navier Stokes (RANS)

    Navier Stokes, ,

    .

    Boussinesq (Boussinesq Approximation),

    z

    . Reynolds,

  • 3

    50

    S

    Boussinesq (Boussinesq Assumption)

    ,

    . ,

    ,

    (sigma co ordinate transformation).

    3.2.1 .

    (Shallow water equations)

    H :

    x

    u

    +

    y

    v

    +

    z

    w

    = S (3.1)

    x y :

    t

    u

    +

    x

    u

    2 +

    y

    vu

    +

    z

    wu

    = fv - g

    x

    -

    0

    1

    x

    p

    - 0

    g

    z

    dzx

    + F u +

    +z

    z

    uvt + u s S (3.2)

    t

    v

    +

    y

    v

    2 +

    x

    uv

    +

    z

    wv

    = fu - g

    y

    -

    0

    1

    y

    p

    - 0

    g

    z

    dzx

    + F v +

    +z

    z

    vvt + v s S (3.3)

    : t , x, y z ,

    , d

    , h = + d

    , u, v w x, y z

    , f = 2sin Coriolis (

    ). g ,

    , v t , p

    , 0 . S

    (u s , v s )

  • 3

    51

    .

    , :

    F u = x

    x

    uA2 +

    y

    x

    v

    y

    uA (3.4)

    F v = x

    x

    v

    y

    uA +

    y

    y

    vA2 (3.5)

    A .

    u, v w

    z = :

    t

    + u

    x

    + v

    y

    - w = 0,

    z

    v

    z

    u, = sysx

    tv

    ,

    1

    0

    (3.6)

    z = -d:

    ux

    d

    + v

    y

    d

    + w = 0,

    z

    v

    z

    u, = bybx

    tv

    ,

    1

    0

    (3.7)

    ( sx , sy ) ( bx , by ) x y

    .

    h,

    ,

    . ,

    :

    t

    h

    +

    x

    uh

    +

    y

    vh

    = hS + P - E (3.8)

    P E ( )

    u v :

    d

    udzu ,

    d

    vdzv (3.9)

    .

    , , T , s

    :

    sT , (3.10)

  • 3

    52

    , UNESCO,

    . (. UNESCO, 1981).

    3.2.2

    :

    = h

    zz b , x = x, y = y (3.11)

    z b

    , ,

    . :

    z

    =

    h

    1 (3.12)

    yx, =

    y

    h

    y

    d

    hyx

    h

    x

    d

    hx

    1,

    1 (3.13)

    To ()

    h , .

    , ,

    , ( 3.1).

    (3.11)

    z, x, y.

    ,

    . ,

    : d = z - z b , . ,

    : = f (z, x, y).

    ()

    .

    ,

    - .

    Phillips (1957).

    -

  • 3

    53

    s

    Song & Haidvogel (1994). E

    .

    ,

    , , , . . .

    ,

    ,

    .

    ,

    .

    ,

    z (. 3.2). ,

    (

    )

    .

    ,

    , z

    .

    ,

    ,

    Couette.

    ,

    .

    ,

    ,

    .

  • 3

    54

    3.1 (Drago, Iovenitti, 2000)

    3.2 : sigma z (DHI Software, Hydrodynamic Module, User Guide, 2007)

  • 3

    55

    :

    t

    h

    +

    x

    hu

    +

    y

    hv

    +

    h = h S (3.14)

    t

    hu

    +

    x

    hu

    2 +

    y

    hvu

    +

    uh = fvh - gh

    x

    -

    x

    ph

    0 -

    z

    dzx

    phg

    0

    + hF u +

    +

    u

    h

    vv + h Sus (3.15)

    t

    hv

    +

    x

    huv

    +

    y

    hv

    2 +

    vh = fuh - gh

    y

    -

    y

    ph

    0 -

    z

    dzy

    phg

    0

    +

    + hF v +

    v

    h

    vv + h Svs (3.16)

    , , k :

    )BP(h

    k

    v

    hFh

    kh

    y

    hvk

    x

    huk

    t

    hk

    k

    t

    k

    1

    (3.17)

    )BP(h

    k

    v

    hFh

    h

    y

    hvk

    x

    huk

    t

    hk

    k

    t

    k

    1

    cBcPck

    h

    v

    h

    h

    y

    hv

    x

    hu

    t

    h231

    t

    1F

    (3.18)

    :

    =

    y

    hv

    x

    hu

    t

    h

    y

    dv

    x

    duw

    h

    1 (3.19)

    o . :

    hF u

    x

    uhA

    x2 +

    x

    v

    y

    uhA

    y (3.20)

    hF v

    x

    v

    y

    uhA

    x +

    x

    uhA

    y2 (3.21)

    h(F T , F s , F k , F , F c )

    yhD

    yxhD

    xhh (T, s, k, , C) (3.22)

  • 3

    56

    = 1:

    = 0,

    vu, =

    tv

    h

    0

    sysx , (3.23)

    = 0:

    = 0,

    vu, =

    tv

    h

    0

    bybx , (3.24)

    . , , (3.8).

    3.2.3

    Reynolds RANS

    ,

    . ,

    1.3, Boussinesq

    :

    ij

    i

    j

    j

    i

    tji kx

    u

    x

    uv'u'u

    3

    2

    (1.11)

    1, tv

    . , ,

    tv .

    , .

    .

    . ,

    , . ,

    Reynolds ().

  • 3

    57

    3.2.3.1

    . O Smagorinsky (1963)

    (stresses) ()

    .

    :

    A = c s2 l 2 ijijSS2 (3.25)

    c s , l

    :

    S ij = j

    i

    x

    u

    +

    i

    j

    x

    u

    (i, j = 1, 2) (3.26)

    (3.25) ,

    RANS. H Smagorinsky

    c s 0.25 1 (DHI, Hydrodynamic Module

    User Guide, 2007).

    . Smagorinsky

    x, y .

    3.2.3.2

    k - , k

    :

    t = c

    2k (3.27)

    k (),

    (dissipation of TKE) c

    ( Rodi, 1984).

    , k, , ,

    :

  • 3

    58

    BP

    z

    kv

    zF

    z

    wk

    y

    vk

    x

    uk

    t

    k

    k

    t

    k (3.28)

    231 cBcPckz

    v

    zF

    z

    w

    y

    v

    x

    u

    t

    t

    (3.29)

    P B :

    P =

    22

    00 z

    v

    z

    uv

    z

    v

    z

    ut

    yzxz

    (3.30)

    B = 2Nv

    t

    t

    (3.31)

    Brunt Visl, N, :

    Nz

    g

    0

    2 (3.32)

    t Prandl k , c 1 , c 2 c 3

    . F , :

    FFk , = ,ky

    Dyx

    Dx

    hh

    (3.33)

    :

    hD = A/ k hD = A/ , .

    k . 3.1.

    3.1 k (Rodi, 1984)

    c c 1 c 2 c 3 t k

    0.09 1.44 1.92 0 0.9 1.0 1.3

    (dissipation) , sU .

    z = :

    k = 21

    sUc

    (3.34)

  • 3

    59

    = b

    s

    z

    U

    3

    (3.35)

    sU > 0

    z

    k

    = 0 (3.36)

    =

    h

    ck

    2/3

    (3.37)

    sU = 0

    = 0.4 von Karman, = 0.07,

    z s

    . :

    z = - d:

    k = 21bU

    c

    (3.38)

    = b

    s

    z

    U

    3

    (3.39)

    z b .

    3.3

    3.3.1

    xy

    (unstructured mesh).

    . ,

    (flexible mesh) (grid)

    .

    .

    ,

  • 3

    60

    .

    3.3.2

    z

    . , , ,

    ( ).

    .

    , ,

    . ,

    ,

    .

    3.3 (DHI, 3 F, 2007)

    , .

    . (layers)

    : 1) -

    (equidistant layers), 2) (layer thickness), 3)

    (variable)

    , .

  • 3

    61

    2

    .

    . Reynolds

    Averaged Navier Stokes k

    3.2.2.

    3.4 . 12

    ,

    (aspect ratio). ,

    , 1/20

    1/100, ,

    .

    (z/x = 1),

    .

  • 3

    62

    3.3.3

    :

    )()( USUFt

    U

    (3.40)

    U , VI FFF

    (flux vector function) S .

    (. 3.1) i

    Gauss :

    i i iA A

    dsnFdUSdt

    U (3.41)

    iA (area) ,

    iA , i , ds

    n

    , .

    (horizontal convectional fluxes)

    Riemann,

    . ,

    semi - implicit

    (explicitly),

    (implicitly). ,

    , - ,

    (lower order scheme), (higher order

    scheme).

    Euler (first order

    explicit Euler method),

    (second order implicit trapezoidal rule).

    Runge Kutta (second order Runge Kutta method),

    (second order implicit trapezoidal

    rule).

  • 3

    63

    3.3.4 CFL

    H

    Courant (CFL). Courant :

    s

    tcCR

    (3.42)

    t , s

    c

    :

    ghc (3.43)

    Courant

    ( ) .

    CFL

    (Courant - Friedrich - Lvy) :

    y

    tvgh

    x

    tughCFLHD

    (3.44)

    h , u v

    x y , g , x y

    ,

    (

    x = y).

    CFL

    0 1 ( 1).

    0.8.

    3.3.5

    CFL, .

    , x

    Courant,

    maxt , Courant:

  • 3

    64

    c

    Cxt rmax

    (3.45)

    ghc . , ,

    maxt

    .

  • 4

    65

    4

    4.1

    4.1.1

    , .

    2000 m. 100 m,

    10 m,

    . .

    ,

    ,

    . Nezu & Rodi (1985) (secondary

    currents)

    10.

    B/h = 10. 4.1.

    4.1

  • 4

    66

    ,

    Eifler & al. (1989)

    . 2.

    , , :

    D/L = 5 10 3 1 (4.1)

    1.1.

    0.2 m/sec, : U ~ 0.2 m/s. , ,

    10 3 m, L = 2000 m,

    Rossby :

    R 0 = Lf

    U

    =

    35 10210976.8

    20

    .

    R 0 1.12. (4.2)

    f Coriolis: f sin2 , 38 ( ).

    R 0 > 1,

    , .

    10 m.

    4 m/s .

    , z, ( ).

    .

    4.1.2

    4.1.2.1 .

    , , 4

    m/sec . T

    1200 secs (20 )

    (blow up).

  • 4

    67

    , s ,

    .

    :

    s = wd uc wu (4.3)

    1.29 kg3m , c d

    , , wu = (u w , v w )

    10 m. .

    4.2

    ,

    .

    Wu (1980, 1994)

    :

    c w 10 < w

    c d = c + ab

    ab

    ww

    cc

    (w 10 - w ) w w 10 w b (4.4)

    c b w 10 > w b

    : c , c b , w w b w 10

    10 m. .

  • 4

    68

    O : c = 1.255310 ,

    c b = 2.425310 , w = 7 m/sec.

    , DHI, Water and

    Environment, Hydrodynamic module, User Guide, (2007).

    w10 = 4 m/sec,

    c d = 1.225310 . O: *U = / s

    -

    s = dc24 , : *U 5.0895

    310

    m/sec.

    4.1.2.2

    (bed resistance).

    , ikuradse, k s

    0.0001 m, , .

    ,

    , k s */Uv , *U

    , ( Nezu &

    Nakagawa, 1993).

    : )//( *Uvkk ss sk < 5, .

    ,

    ,

    ,

    . ( 705 sk ),

    .

    51.0sk < 5, 3

    * 100895.5U ,

    6101 v .

  • 4

    69

    3 Smagrinsky

    .

    Smagrinsky 0.28. Smagrinsky

    , 6108.1 10101 .

    4.1.2.3

    t = 0 .

    ,

    .

    .

    k - , ,

    (turbulent kinetic energy),

    (dissipation of turbulent kinetic energy)

    10 7 m 2 /s 2 5 10 10 m 2 /s 3 , .

    , 8.1 10 6 m 2 /s.

    4.1.2.4

    (slip boundary condition),

    . ( 4.3),

    , (open boundaries)

    , . ,

    , .

    ,

    , 10 7 m 2 /s 2 5 10 10 m 2 /s 3 , , .

    4

    5.

    . ,

  • 4

    70

    25 %,

    .

    4.1.2.5

    2000 100 m

    3.

    - ,

    .

    ,

    . -

    : A = (1/2) 28660 x. . Smooth mesh

    .

    (grid

    resolution)

    ,

    ,

    . 4.4

    . ,

    , .

    ,

    (grid resolution). , ,

    4.1.2.7 .

  • 4

    71

    x (m)

    4.3 . O y, ( )

    y (

    m)

  • 4

    72

    (1) x max = 27 m (2) x max = 22 m

    (3) x max = 16 m (4) x max = 11 m

    4.4 . .

    4.1.2.6 .

    .

    ,

    .

    ,

    .

    .

  • 4

    73

    . Bernard &

    Wallace (2002) Pope (2000).

    ,

    . , ,

    U

    : 0 vu ,

    , ( 4.6).

    uv

    y

    U (4.5)

    0y

    wy

    U

    (4.6)

    ,w v ( )

    ( ). :

    U w* (4.7)

    :

    *w

    U

    v

    v (4.8)

    w .

    Reynolds ,

    Reynolds:

    v

    *

    *

    h

    v

    hURe (4.9)

    ,

    :

    v

    yU

    yy *

    v

    (4.10)

  • 4

    74

    y Reynolds

    .

    y

    (). (viscous wall region), 50y ,

    ( Nezu

    & Nakagawa, 1993 30y ),

    (outer layer), 50y ,

    . (viscous sub layer),

    5y , .

    Reynolds,

    , h , 1

    *Re ,

    . (4.9).

    ,

    : hv,, *U

    :

    2

    *w U (4.11)

    Buckingham :

    h,,y,,U *U 3 .

    *UU :

    *o

    *

    Re,h

    yF

    U

    U (4.12)

    *Re (4.9) oF = "" (universal)

    .

    . U ,

    : dyUd . H

    .

  • 4

    75

    ,

    :

    h

    y,

    y

    y

    U

    dy

    Ud

    1* (4.13)

    1: "" .

    ( 50y ),

    h (outer layer), 50y .

    :

    * Rehy/y (4.14)

    (4.13)

    (4.12).

    (law of the wall)

    Prandtl (1925) Reynolds

    ( 1hy ) (inner layer)

    , .

    . (4.13)

    y hy . , . (4.13) :

    *

    y

    y

    U

    dy

    Ud hy

  • 4

    76

    ydyy

    1)(yf

    y

    0

    w

    (4.19)

    U

    y , 1hy . Reynolds

    (. Pope, 2000) wf ""

    .

    ( ), 00y

    U ,

    00 wf , (4.6) 10 fw .

    Taylor, y , yfw , :

    200f0ff yyy www 20 yyyfw (4.20)

    4.5 DNS (Direct Numerical Simulations) Kim et al. (1987): Re = 5600, Re = 13750

    yuU . Pope (2000)

  • 4

    77

    . 4.5

    U .

    U = y

    ( 5y ) 12y .

    15.0~1.0hy .

    Reynolds,

    y . , h.y 10 11.01.0 ** RehUy .

    y . , . (4.15)

    y ( ) ,

    1 . , :

    1 1hy 1y (4.21)

    , . (4.17) :

    ydy

    Ud

    1 (4.22)

    :

    lny

    1U

    (4.23)

    . . (4.23)

    = von Karman.

    4.6 .

    , Reynolds,

    30y .

  • 4

    78

    4.6 , Wei and Willmarth (1989): Re = 2970, Re = 14914, Re = 22776 Re = 39582.

    uU

    ( 5y )

    ( 30y ), (buffer layer).

    (

    ) .

    Nezu & Nakagawa (1993),

    :

    () ( 15.0~hy ):

    *U *U , . ,

    , .

    (bursting phenomena)

    , 5y . ( 5y )

    .

    () ( 16.0 hy ):

    , h maxU , .

    , .

    () ( 6.015.0~ hy ):

    .

    y , .

  • 4

    79

    ( )

    50y .

    4.1.2.7

    . ,

    .

    -

    .

    (horizontal mesh resolution).

    , (

    )

    ,

    .

    y ,

    ,

    : 50 y 100 Nezu &

    Nakagawa (1993).

    , y p

    , y : y = v

    yu p*

    *u

    .

    y , bu ,

    . , ,

    Eifler & al. (1989), . . 2.

  • 4

    80

    y 100,

    , : z bot = 2 y p , y p 0.0196 m

    y p = 0.02 m. , z bot = 0.04 m. ,

    . 5,

    y = 61, b

    u

    y = 100

    10 %.

    K (vertical domain)

    h .

    4.2

    . , ,

    , 4.1.

    . ,

    -

    , (1.1 m).

    -

    ,

    , 2.

    4.7.

    Eifler & al (1989). , ,

    u ,

    ,

  • 4

    81

    ,

    Eifler & al (1989).

    (4.1 4.2).

    4.7

    4.1 .

    (z/h0)

    0.004

    0.005

    0.025

    0.026

    0.11

    0.11

    0.11

    0.11

    0.11

    0.11

    0.11

    0.11

    0.026

    0.025

    0.005

    0.004

  • 4

    82

    4.2

    4.2

    4.2.1

    .

    , ,

    , , , ,

    . . . . , 4.8

    4.10 ,

    u ,

    (50, 1000) (layer

    8), , k tv .

    ,

    . k

    .

    1 2 3 4

    x

    (m)

    27 22 16 11

    26 26 26 26

    ( - layers)

    13 16 19 24

    (m2

    )

    315.66 209.57 110.85 52.39

    xy

    1135 1520 2999 6092

    xy

    689 893 1724 3360

    (m)

    1.1 1.1 1.1 1.1

    1/24.55 1/20 1/14.55 1/10

    K y

    ( )

    100 100 100 100

  • 4

    83

    x max = 27 m.

    .

    .

    ,

    .

    0 10 20 30 40 50 60 70 80 90 100 110 120

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    0.24

    u

    layer 8

    U (

    m/s

    ec)

    Time (hrs)

    4.8 (50, 1000) o (layer 8)

  • 4

    84

    0 10 20 30 40 50 60 70 80 90 100 110 120

    0.0

    5.0x10-4

    1.0x10-3

    1.5x10-3

    2.0x10-3

    2.5x10-3

    3.0x10-3

    3.5x10-3

    4.0x10-3

    4.5x10-3

    5.0x10-3

    5.5x10-3

    6.0x10-3

    6.5x10-3

    layer 8

    v t (

    m2/s

    ec)

    Time (hrs)

    4.9 (50, 1000) o (layer 8)

    0 10 20 30 40 50 60 70 80 90 100 110 120

    0.0

    1.0x10-5

    2.0x10-5

    3.0x10-5

    4.0x10-5

    5.0x10-5

    6.0x10-5

    7.0x10-5

    8.0x10-5

    9.0x10-5

    1.0x10-4

    k

    Tu

    rbu

    len

    t kin

    etic

    en

    ergy

    (m2/s

    ec2)

    Time (hrs)

    4.10 (50, 1000) o (layer 8)

  • 4

    85

    4.2.2

    ,

    ,

    .

    . Couette

    x max = 27 m. 4.11

    u , (50, 1000)

    , (50, 0) 4.12

    , .

    4.14 4.13 u

    k, ,

    , , 50 m.

    ,

    ,

    .

    .

    4.15

    , , u,

    ,

    MIKE 3 Flow Model F.M (3D, Volume Series).

    . , 4.16

    ,

    4.15.

    . 4.17

    .

    .

    ,

    u

  • 4

    86

    , .

    55 % .

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33

    x = 50, y = 1000

    x = 50, y = 900

    x = 50, y = 800

    x = 50, y = 700

    x = 50, y = 600

    x = 50, y = 500

    x = 50, y = 400

    x = 50, y = 300

    x = 50, y = 200

    x = 50, y = 100

    x = 50, y = 0

    U (m/sec)

    z/h

    0

    4.11 . u 100 m, . (50, y), 1000 y 0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33

    x = 0, y = 1000

    x = 20, y = 1000

    x = 40, y = 1000

    x = 50, y = 1000

    x = 60, y = 1000

    x = 80, y = 1000

    x = 100, y = 1000

    U (m/sec)

    z/h

    0

    4.12 . u (0, 1000) (100, 1000) 10 m

  • 4

    87

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    0.0

    3.0x10-5

    6.0x10-5

    9.0x10-5

    1.2x10-4

    1.5x10-4

    1.8x10-4

    2.1x10-4

    2.4x10-4

    2.7x10-4

    3.0x10-4

    , k

    Tu

    rbu

    len

    t kin

    etic

    en

    ergy

    (m2/s

    ec2)

    x/L

    4.13 k o (layer 8)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.15

    0.16

    0.17

    0.18

    0.19

    0.20

    0.21

    0.22

    0.23

    x/L

    U (

    m/s

    ec)

    4.14 u o (layer 8)

  • 4

    88

    4.15 . , u , 3 HD Flow model F.M. () H . ()

  • 4

    89

    wind = 4 m/sec

    4.16 , u.

    wind = 4 m/sec

    4.17 , - .

    ,

    ,

    . 4.18,

    h

    410 .

    . , Couette

    .

  • 4

    90

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

    1.0x10-5

    2.0x10-5

    3.0x10-5

    4.0x10-5

    5.0x10-5

    6.0x10-5

    7.0x10-5

    8.0x10-5

    9.0x10-5

    1.0x10-4

    1.1x10-4

    1.2x10-4

    1.3x10-4

    1.4x10-4

    1.5x10-4

    1.6x10-4

    xmax

    = 11 m

    xmax

    = 16 m

    xmax

    = 22 m

    xmax

    = 27 m

    Su

    rfa

    ce e

    leva

    tio

    n (

    m)

    x/W

    4.18 ( x

    max)

    4.2.3

    4.19

    (

    ) .

    (x max = 11 m).

    , .

    0.204 mm, x max = 27 m,

    .

    4.3,

    ,

    10 %.

    . 4.20

    .

  • 4

    91

    4.18, 4.19 4.20

    , .

    4.3

    x max (m)

    ,

    11 -1.3347

    10

    16 -1.377

    10

    22 -1.2227

    10

    27 -1.4597

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

    2.0x10-5

    4.0x10-5

    6.0x10-5

    8.0x10-5

    1.0x10-4

    1.2x10-4

    1.4x10-4

    1.6x10-4

    1.8x10-4

    2.0x10-4

    xmax

    = 11 m

    xmax

    = 16 m

    xmax

    = 22 m

    xmax

    = 27 m

    Su

    rfa

    ce e

    leva

    tio

    n (

    m)

    y/L

    4.19

  • 4

    92

    4.20 ,

  • 4

    93

    4.2.4

    u Eifler & al. (1989)

    , (50, 0) MIKE 3 Flow Model F.M,

    Eifler & al. (1989)

    , 4.21,

    ( . 4.4).

    .

    ( . 2).

    10 %.

    , Eifler & al. (1989)

    ,

    , . ,

    ,

    .

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

    Analytical solution

    3D - Numerical model solution

    u/u*

    z/h

    0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

    Analytical solution

    3D - Numerical model solution

    u/u*

    z/h

    0

    x max = 11 m x max = 16 m

  • 4

    94

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

    Analytical solution

    3D - Numerical model solution

    u/u*

    z/h

    0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

    Analytical solution

    3D - Numerical model solution

    u/u*

    z/h

    0

    x max = 22 m x max = 27 m

    4.21 u MIKE 3 HD (Flow Model F. M) Eifler & al. (1989) . (50,0)

    4.2.5

    ,

    u

    , (.

    4.4).

    u x max = 11 m, 16 m. 27 m,

    4.22, .

    , 4.23

    ,

    x max = 27 m. x max = 22 m.