Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER...

27
Precipitation and Precipitation and altimeter missions altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France

Transcript of Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER...

Page 1: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Precipitation and altimeter Precipitation and altimeter missionsmissions

Jean Tournadre

Laboratoire d’Océanographie Spatiale

IFREMER Plouzane France

Page 2: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

1. Basic principles of satellite altimetry

Interaction of the pulse of duration τ with a smooth sea surface.

For an altimeter in a 1000-km orbit a pulse duration of about 3 ns would lead to a footprint of diameter 2.8 km.

Page 3: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

In this way, the altimeter is able to average out the effect of the ocean waves. This parameter is called a Significant Wave Height (SWH), max power : sigma0 (wind), epoch (sea surface height)

In practice sea surface is rough rather than flat. As a result, the first reflection of energy commences when the leading edge of the pulse reaches the topmost crests of the waves, earlier than for the flat surface, but the reflected energy does not achieve its maximum until the trailing edge reaches the lowest wave trough.

Page 4: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Problem of rain for altimeter: perturbations of the signal: attenuation and change of propagation speed.

– Attenuation: modification of the waveforms

– Speed change : conversion time/distance• Since Topex: Radar altimeters operate at two frequencies:

Ku and a C or S bands, mainly for correction of ionospheric effects

• Rain detection from dual-frequency backscatter coefficient data well established (based of Ku vs C band attenuation)

• Used operationally for Jason and Envisat rain flagging

• Several studies showed that rain rate estimates are possible (McMillan et al 2002, Tournadre, 1998)

Context

Page 5: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Two main problems for precipitations studies

– Low time and space sampling of the ocean by one altimeter (nadir view only)

– No estimation of the height of rain necessary (assimilated to the freezing level FL) to infer the surface rain rate from the attenuation over the atmospheric path

• New method to infer FL from radiometers (that are part of the altimetric missions)

• Merging of different altimeters data to improve the time and space sampling

Rationale

Page 6: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Rain attenuation is frequency dependant :

• Attenuation by rain one/two order of magnitude larger at Ku band than that a C/S band

Detection of occurrence where Kuattenuated vs C/S

• Use of rain free Ku/C band relation

Overview of the Method

Mean « rain free » KU/C(S) relation (f)

Δσ 0 =f (σ0C / S)−σ0

Ku>1 . 8 rms(σ0C /S )

Lz>200 μm

RMS of the f relation

Lz:liquid water content from radiometer

Page 7: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Rain rate and Freezing level determination

• Rain rate from attenuation using Marshall-Palmer relation

• a and b frequency dependent coeff.

• H height of rain ~ freezing level• Problem : determination of FL?• Model of TB’s as a function of rain

rate and FL• Wilheit et al 1977 atmosphere

model• Rosencrantz 2002 Radiative

transfer model• FL estimated by inversion of TB

for rain flagged samples

b

HaR

/1

20

Topex TMR microwave TB

modelling

Page 8: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Radiometer Brightness Temperatures

• TB near 18 and 22 GHz selected for inversion for Topex and Jason (36.5 and 22 for Envisat). More sensitivity.

• Distribution of the TB for rain flagged samples.

FL and Rrad by inversion of TB18 and TB22

~35% of TBs outside model because of difference of sensor resolution

Page 9: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Validation of Freezing level estimates

• About 50 % of FL for low rain rate (<2mm/hr) and more than 80% for R>5 mm/hr

• Higher proportion for high latitude than in the Tropics.

Proportion of valid FL estimates

Page 10: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Comparison with NCEP and ECMWF FL for 2003

• Underestimation of high FL (>4 km)

• Overestimation for FL<3 km• Overestimation at mid and

high latitude• Underestimation in the Tropics• Similar results with SSM/I and

TRMM Fl estimates using PR bright band

• Better than SSM/I and good overall agreement

Validation of Freezing level estimates

Topex

Jason

Envisat

Page 11: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Mean FL for winter 2003

JASONNCEPSSM/I F14

Page 12: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Log-normal distribution method (Berg and Chase (1992) • The lognormal density : non linear function of two variables,

μ and .

• where p is the probability of non zero rainfall

value. and expressed by• Ri : ensemble of instantaneous rainfall estimates

Mean rain rate

P (R, μ,σ )= prσ √(2 π

exp [ 1

2σ 2

( ln r - μ )2

] R> 0

μ̂=1 /n∑i= 1

n

ln R i

σ̂=1 /n∑i=1

n

[ ln R i− μ̂ ]2

Page 13: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Mean annual rain rate fields for 2003

TopexTopex

JasonJason

EnvisatEnvisat

MergedMerged

GPCPGPCP

SSM/IF13SSM/IF13

•Very good agreement between Jason , Envisat and Topex expected for high northern latitude

•Good agreement with Global Precipitation Climatology Project

•More smaller scale details (coherent with TRMM climatology)

•Merged data set using histogram equalization for Envisat.

Page 14: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Mean annual rain rate fields for 2003

Mean latitudinal distribution

Page 15: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

OTHER PARAMETER RAIN CELL LENGTH

•Very good along-track resolution by altimeter (~5-8 km)•Length= number of consecutive rain samples•Rain Cell Diameter Distribution (RCDD): exponential pdf

•Altimeter : Rain Cell Chord exponential pdf with l=2/•Mean rain cell diameter 1/

N ( D,τ )=N 0 ( τ ) exp [− λ ( τ ) D ]

Topex param

Can allow the study of rain event nature (stratiform, convective,..)

Page 16: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Online web server at IFREMER CERSAT

• All the data for the Topex,Jason and Envisat missions have been processed and are available at Ifrermer both on ftp and in a browser

Page 17: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

MESCAL-ALTIKAAltika : altimeter in Ka band . Better performances but one major problem at Ka band (35.75 GHz) rain and cloud can strongly attenuate the signal and distort the echo waveform.

At Ka band the attenuation by cloud droplet is about 1.1 dB/km par g/m3 (10 time larger than Ku band), not negligible. Cloud at Ka = rain at Ku .

Cloud more frequent than rain. Necessity to analyze in detail the effect of cloud on the signal

Estimation of attenuation, off-nadir angle, leading edge slope at 1Hz and 20 Hz as a function of cloud parameters (IWC, height, diameter,..)

Estimation of the impact of cloud on the geophysical parameters (ssh,s0, SWH) retrieval: waveform modeling and MLE4 (Stenou et al). Determination of data availibility

Previous studies (Tournadre 1999). In presence of rain larger than 1-2 mm/hr the distortion of the waveform will inhibit the geophysical parameter retrieval.

Page 18: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Waveform distortion by rain and cloud

Ka band : strong attenuation by rain and cloud

But more important:

strong distortions of the waveform shape : modification of leading edge and plateau slope

10

1

0.1

Altika WF over a 10 km 2.5 mm/hr rain cell

Return power Attenuation

Page 19: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Modeled waveforms using (10 km resolution 10 km) AIRS liquid water data from AIRS on AQUA

attenuationOff-nadir angle variations

Page 20: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Ex of Altika pass over cloud or low rain

Page 21: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Waveforms in log scale

Off-nadir

sigma0

Variation of zeta Local attenuation ? Need of a 2nd frequency

Page 22: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

Raw waveforms in log scale

Change of slope

Page 23: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

LWC

WVC

TB23 & 37 GHz

Page 24: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.

• Altimeter can be use to estimate oceanic precipitations.• A 13 years database already exist (pb of time to

complete for a 20 year one• In the perspective of MESCAL the use of Ka band could

allo to estimate the integrated precipitation for low rain rate.

Conclusion

Page 25: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.
Page 26: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.
Page 27: Precipitation and altimeter missions Jean Tournadre Laboratoire d’Océanographie Spatiale IFREMER Plouzane France.