PH ENIX - Brookhaven National Laboratory...Jun 10, 2010  · AB 6q 0 0.5 1 1.5 2 2.5 3) (arb. units)...

15
Thesis Flash Talk Michael P. McCumber Advisor: Barbara Jacak RHIC/Users Meeting 10 June 2010 PH ENIX

Transcript of PH ENIX - Brookhaven National Laboratory...Jun 10, 2010  · AB 6q 0 0.5 1 1.5 2 2.5 3) (arb. units)...

  • Thesis Flash TalkMichael P. McCumberAdvisor: Barbara Jacak

    RHIC/Users Meeting10 June 2010

    PH ENIX

  • Thank you! 2

  • Hard Scattering and Jets 3

    Au

    Au

    Physics Motivation:Jet Reconstruction

    parton

    Two Particle Correlation

    ■ Energy loss■ Production geometry■ Medium excitations

    Δϕ, Δη

    Δϕ

    = ≈

    = =

  • The Division of Labor 4

    Higher pair momentum: p{A,B}T � 4 GeV/c

    Explore:fast parton survival

    Learn:initial deposit geometryenergy loss characteristics

  • The Division of Labor 4

    Higher pair momentum: p{A,B}T � 4 GeV/c

    Explore:fast parton survival

    Learn:initial deposit geometryenergy loss characteristics

    Lower pair momentum: p{A,B}T � 4 GeV/c

    Explore:medium responseor triangular flow

    Learn:production mechanismsmedium properties

    )J(

    0

    0.01

    0.02

    0.03

    0.04

    Au+Au 200 GeV 5-10%

  • Energy Loss 5

    AB

    0 0.5 1 1.5 2 2.5 3

    ) (ar

    b. u

    nits

    )A

    BJ(

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.20 [4.0,7.0] GeV

    TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    = 0.66(3)

    ]°,15° [0| A

    -|]°,90° [75|

    A-|

  • Energy Loss 5

    AB

    0 0.5 1 1.5 2 2.5 3

    ) (ar

    b. u

    nits

    )A

    BJ(

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.20 [4.0,7.0] GeV

    TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    = 0.66(3)

    ]°,15° [0| A

    -|]°,90° [75|

    A-|

  • Energy Loss 5

    AB

    0 0.5 1 1.5 2 2.5 3

    ) (ar

    b. u

    nits

    )A

    BJ(

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.20 [4.0,7.0] GeV

    TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    = 0.66(3)

    ]°,15° [0| A

    -|]°,90° [75|

    A-|

    (rad)s0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Nea

    r PTY

    (arb

    . uni

    ts)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    ]183 [0,

    0.06 (stat+sys)± = 0.94 in/PTYoutPTY

    -correctedrp

    0 [4.0,7.0] GeV TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    in-plane out-plane

    insignificant near-side trend

  • Energy Loss 5

    AB

    0 0.5 1 1.5 2 2.5 3

    ) (ar

    b. u

    nits

    )A

    BJ(

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.20 [4.0,7.0] GeV

    TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    = 0.66(3)

    ]°,15° [0| A

    -|]°,90° [75|

    A-|

    (rad)s0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Aw

    ay P

    TY (a

    rb. u

    nits

    )

    -0.05

    0

    0.05

    0.1

    0.15

    Renk - Phys.Rev.C78:034904,2008Pantuev - private communication

    ],97 [

    0.25 (stat+sys)± = 0.60 in/PTYoutPTY

    -correctedrp

    0 [4.0,7.0] GeV TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    in-plane out-plane

    falling away-side trend

    (rad)s0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Nea

    r PTY

    (arb

    . uni

    ts)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    ]183 [0,

    0.06 (stat+sys)± = 0.94 in/PTYoutPTY

    -correctedrp

    0 [4.0,7.0] GeV TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    in-plane out-plane

    insignificant near-side trend

  • Energy Loss 5

    AB

    0 0.5 1 1.5 2 2.5 3

    ) (ar

    b. u

    nits

    )A

    BJ(

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.20 [4.0,7.0] GeV

    TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    = 0.66(3)

    ]°,15° [0| A

    -|]°,90° [75|

    A-|

    (rad)s0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Aw

    ay P

    TY (a

    rb. u

    nits

    )

    -0.05

    0

    0.05

    0.1

    0.15

    Renk - Phys.Rev.C78:034904,2008Pantuev - private communication

    ],97 [

    0.25 (stat+sys)± = 0.60 in/PTYoutPTY

    -correctedrp

    0 [4.0,7.0] GeV TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    in-plane out-plane

    falling away-side trend

    (rad)s0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Nea

    r PTY

    (arb

    . uni

    ts)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    ]183 [0,

    0.06 (stat+sys)± = 0.94 in/PTYoutPTY

    -correctedrp

    0 [4.0,7.0] GeV TAp

    ± [3.0,4.0] GeV h TBp

    = 200 GeV - Cent 20-60%NNsAu+Au

    in-plane out-plane

    insignificant near-side trend

    ■ a large initial anisotropy or ■ a large path-length dependence

  • Lower pT Correlations 6

    D

  • Lower pT Correlations 6

    rms

    (rad

    ) or k

    urto

    sis

    1

    2

    3

  • Lower pT Correlations 6

    rms

    (rad

    ) or k

    urto

    sis

    1

    2

    3

  • Lower pT Correlations 6

    rms

    (rad

    ) or k

    urto

    sis

    1

    2

    3

  • Description 7

    Money plot #1: Fake rate against real jet rate to define the momentum range where fakes contribute

    Goal #1: “What is the rate of fake jets in a central Au+Au collisions after average background energy (pedestal) is removed?”

    Procedure: (1) Embed Pythia jet events into central (b=4.5) Au+Au Hijing Events

    + Hijing hard scattering limit set to 5 GeV/c (so there are no jets)+ FastJet AntiKt R=0.3

    (2) Reconstruct jets with and without Hijing particles (3) Characterize the average excess pT and rms from jet put in Hijing

    (4) Subtract average excess

    Goal #2: “What is the intrinsic smearing from background fluctuations for real jets in a heavy ion collision?”

    Money plot #2: Intrinsic jet pT RMS from background