Nicol o Jacazio for the ALICE collaboration University of Turin and … · 2018. 11. 16. · Nicol...

1
Transverse momentum spectra of π , K and p in small collision systems: search for collective phenomena Nicol`o Jacazio for the ALICE collaboration University of Turin and INFN The ALICE detector I VZERO detectors trigger and centrality/multiplicity Main detectors for PID: I Inner tracking system (ITS) I Time projection chamber (TPC) I Time of flight (TOF) I High momentum PID (HMPID) Measuring the event multiplicity VZERO percentiles Event multiplicity at forward-rapidity obtained measuring the signal in the two V0 detectors and dividing its distribution into percentile-based classes Counting tracks Event multiplicity at mid-rapidity (|η | < 0.8) obtained by counting tracks reconstructed in the barrel detectors and segments of tracks reconstructed with the SPD detector to increase the acceptance VZERO Amplitude (a.u.) 0 5000 10000 15000 20000 Events -2 10 -1 10 1 10 2 10 Data Glauber fit 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 0 500 1000 10 2 10 70-80% 60-70% ALI-PUB-8808 [2] VZERO-A amplitude (a.u.) 0 100 200 300 400 500 600 700 800 900 Events (a.u.) 1 10 2 10 3 10 4 10 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100% = 5.02 TeV NN s ALICE p-Pb at 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100% 03/05/2013 ALI-PERF-51387 ch N 0 10 20 30 40 50 60 70 ) ch N P( -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1 ALICE pp > 0.15 GeV T p | < 0.8, η > 0, | ch N = 7 TeV, s ALI-PUB-59106 [3] PID strategies ITS ) c (GeV/ p 0.07 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 m) μ (keV/300 x /d E ITS d 0 100 200 300 400 500 600 700 05/03/2013 TeV 5.02 = NN s p-Pb π e K p ALI-PERF-46922 I Specific energy-loss in the ITS vs momentum I dE /dx resolution for the ITS 10% (p–Pb) TPC ) c (GeV/ p 0.2 0.3 0.4 1 2 3 4 5 6 7 8 9 10 (arb. units) x /d E TPC d 0 100 200 300 400 500 600 700 π e K p d t 05/03/2013 TeV 5.02 = NN s p-Pb ALI-PERF-46927 I Specific energy-loss in the TPC vs momentum I dE/dx resolution for the TPC 5% (p–Pb) TOF p-Pb minimum bias p K π p K π = 5.02 TeV NN s p-Pb 5/03/2013 (GeV/c) p 0 1 2 3 4 5 β TOF 0.2 0.4 0.6 0.8 1 = 5.02 TeV NN s p-Pb 5/03/2013 π K p K p ALI-PERF-46936 I Particle velocity β measured by TOF vs momentum I TOF time resolution 85 - 120 ps depending on multiplicity (p–Pb) HMPID ) c p (GeV/ 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 HMPID Cherenkov angle (rad) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 π K p TeV 7 = s pp ALI-PUB-72451 [5] I Mean Cherenkov angle vs momentum I 3σ separation for π -K for p T < 3 GeV /c I 3σ separation for p-K for p T < 5 GeV /c Results Spectra in pp The multiplicity in pp can be quantified by the ratio: z raw = (N raw ch ) limit h N raw ch i mult>0 hN raw ch i =9.6, |η | < 0.8 N raw ch z raw 7-12 0.7-1.3 13-19 1.4-2.0 20-28 2.1-2.9 29-39 3.0-4.1 40-49 4.2-5.1 50-59 5.2-6.2 60-71 6.3-7.4 72-82 7.5-8.6 I Multiplicity dependence of the spectral shape I Spectra become progressively harder as a function of multiplicity and particle mass Mass ordering as expected from hydrodynamics -1 ) c ) (GeV/ T p d y /(d N 2 d ev N 1/ -2 10 -1 10 1 10 raw z mult > 0 [0.7-1.4) [1.4-2.1) [2.1-3.0) [3.0-4.2) [4.2-5.2) [5.2-6.3) [6.3-7.5) [7.5-8.6] + π = 7 TeV s pp -1 10 1 Uncertainty statistical total systematic mult. related syst. + K -2 10 -1 10 p ALICE Preliminary ) c (GeV/ T p 0.5 1 1.5 2 2.5 ratio to mult. > 0 1 10 ) c (GeV/ T p 0.2 0.4 0.6 0.8 1 1.2 1.4 1 10 ) c (GeV/ T p 0.5 1 1.5 2 2.5 1 10 ALI-PREL-81642 The Blast-Wave fits The blast-wave model is a simplified hydro model with the following functional form: E d 3 N dp 3 f (p t )= R R 0 m T K 1 (m T cosh ρ/T fo ) I 0 (p T sinh ρ) rdr m T = p m 2 + p 2 T β r (r )= β s (r/R) n ρ = tanh -1 β r 0 1 2 3 4 5 6 ] -2 ) c ) [(GeV/ y d T p /(d N 2 d T p π 1/2 ev N 1/ -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 5 10 = 2.76 TeV NN s ALICE, Pb-Pb, PRC 88, 044909 (2013) Centrality Class: 0-5% (100x) - π + + π (10x) - + K + K (1x) p p + Blast-Wave global fit range c : 0.5-1.0 GeV/ π c K: 0.2-1.5 GeV/ c p: 0.3-3.0 GeV/ ) c (GeV/ T p 0 1 2 3 4 5 6 data / model 1 1.5 - π + + π 1 1.5 - + K + K 1 1.5 p p + ALI-DER-67916 [4] 0 1 2 3 4 5 6 ] -2 ) c ) [(GeV/ y d T p /(d N 2 d T p π 1/2 ev N 1/ -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 = 5.02 TeV NN s ALICE, p-Pb, PLB 728 (2014) 25-38 V0A Multiplicity Class (Pb-side): 0-5% (100x) - π + + π (10x) - + K + K (1x) p p + Blast-Wave global fit range c : 0.5-1.0 GeV/ π c K: 0.2-1.5 GeV/ c p: 0.3-3.0 GeV/ ) c (GeV/ T p 0 1 2 3 4 5 6 data / model 1 1.5 - π + + π 1 1.5 - + K + K 1 1.5 p p + ALI-DER-67956 [1] 0 1 2 3 4 5 6 ] -2 ) c ) [(GeV/ y d T p /(d N 2 d T p π 1/2 ev N 1/ -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 = 7 TeV s ALICE, pp, ALICE Preliminary Multiplicity Class: [0.7, 1.4) raw z (100x) + π (10x) + K p (1x) Blast-Wave global fit range c : 0.5-1.0 GeV/ π c K: 0.3-1.5 GeV/ c p: 0.5-2.5 GeV/ ) c (GeV/ T p 0 1 2 3 4 5 6 data / model 1 1.5 + π 1 1.5 + K 1 1.5 p ALI-PREL-72482 References 1. B.Abelev et Al. (ALICE Coll.) Phys. Lett. B728 (2014) 25-38 2. K. Aamodt et Al. (ALICE Coll.) Phys. Rev. Lett. 106 (2011), 032301 3. ALICE-PUBLIC-2013-001 4. B.Abelev et Al. (ALICE Coll.) Phys. Rev. C 88, 044910 (2013) 5. ALICE Coll. arXiv:1402.4476 [nucl-ex] 6. E. Schnedermann, J. Sollfrank, and U. Heinz Phys. Rev. C 48, 2462 (1993) Spectra in p–Pb ) c (GeV/ T p 0 1 2 3 4 5 ] -2 ) c ) [(GeV/ y d T p /(d N 2 ) d T p π 1/(2 ev N 1/ -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 - π + + π = 5.02 TeV NN s ALICE, p-Pb, < 0.5 CMS y 0 < V0A Multiplicity Classes (Pb-side) 0-5% (64x) 5-10% (32x) 10-20% (16x) 20-40% (8x) 40-60% (4x) 60-80% (2x) 80-100% (1x) individual fit ALI-PUB-58037 [1] ) c (GeV/ T p 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ] -2 ) c ) [(GeV/ y d T p /(d N 2 ) d T p π 1/(2 ev N 1/ -4 10 -3 10 -2 10 -1 10 1 10 2 10 - + K + K = 5.02 TeV NN s ALICE, p-Pb, < 0.5 CMS y 0 < V0A Multiplicity Classes (Pb-side) 0-5% (64x) 5-10% (32x) 10-20% (16x) 20-40% (8x) 40-60% (4x) 60-80% (2x) 80-100% (1x) individual fit ALI-PUB-58041 [1] ) c (GeV/ T p 0 1 2 3 4 5 6 7 ] -2 ) c ) [(GeV/ y d T p /(d N 2 ) d T p π 1/(2 ev N 1/ -5 10 -4 10 -3 10 -2 10 -1 10 1 10 p p + = 5.02 TeV NN s ALICE, p-Pb, < 0.5 CMS y 0 < V0A Multiplicity Classes (Pb-side) 0-5% (64x) 5-10% (32x) 10-20% (16x) 20-40% (8x) 40-60% (4x) 60-80% (2x) 80-100% (1x) individual fit ALI-PUB-58045 [1] Spectra evolution with multiplicity in p–Pb: shown to exhibit behaviour that is qualitatively similar to both pp and Pb–Pb Particle ratios ) c (GeV/ T p 0 0.5 1 1.5 2 2.5 3 Ratio 0.5 1 1.5 2 2.5 3 3.5 ) c (GeV/ T p 0 0.5 1 1.5 2 2.5 3 Ratio 0.5 1 1.5 2 2.5 3 3.5 ALICE Preliminary 2 +syst 2 stat uncert.= = 2.76 TeV NN s Pb-Pb, >=13.4 η /d ch N >=1601/<d η /d ch N <d = 5.02 TeV NN s p-Pb, >=9.8 η /d ch N >=45/<d η /d ch N <d = 7 TeV s pp, <1.4) raw z 8.6)/(0.7 raw z (7.5 ALI-PREL-81606 (p/π ) high multiplicity / (p/π ) low multiplicity I Heavier particles have larger p T for all the colliding systems I Same trend for pp and p–Pb I Higher increase in Pb–Pb Results from BW fits > T β < 0.3 0.4 0.5 0.6 0.7 n 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 > T β < 0.3 0.4 0.5 0.6 0.7 n 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ALICE Preliminary Uncertainties: syst.(from global fit of data) Fit-range related syst. uncert.- not included = 7 TeV s pp, = 5.02 TeV NN s p-Pb, = 2.76 TeV NN s Pb-Pb, ALI-PREL-81587 (GeV) kin T 0.08 0.1 0.12 0.14 0.16 0.18 0.2 n 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 (GeV) kin T 0.08 0.1 0.12 0.14 0.16 0.18 0.2 n 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ALICE Preliminary Uncertainties: syst.(from global fit of data) Fit-range related syst. uncert.- not included = 7 TeV s pp, = 5.02 TeV NN s p-Pb, = 2.76 TeV NN s Pb-Pb, ALI-PREL-81583 T β 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 (GeV) kin T 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 = 5.02 TeV NN s ALICE, p-Pb, V0A Multiplicity Classes (Pb-side) = 2.76 TeV NN s ALICE, Pb-Pb, = 7 TeV s ALICE, pp, = 7 TeV (with Color Reconnection) s PYTHIA8, = 7 TeV (without Color Reconnection) s PYTHIA8, ALI-DER-58133 I n -hβ t i correlations, similar for pp, p–Pb and Pb–Pb I Higher multiplicity at higher hβ t i I n - T kin correlations, similar for pp and p–Pb. Pb–Pb has lower values I Higher multiplicity at lower T kin I Similar trends in pp and p–Pb I PYTHIA with CR reproduces the trend I Higher multiplicity at higher hβ t i Summary and conclusions I π , K and p spectra measured in pp collisions at 7 TeV and p–Pb collisions at 5.02 TeV are presented I The comparison of pp, p–Pb and Pb–Pb shows similarities for the three systems as a function of multiplicity I Similar trends are observed for the three colliding systems and hint at collective effects in p–Pb and pp I Serves as input for further theoretical investigation of the phenomena seen at the LHC

Transcript of Nicol o Jacazio for the ALICE collaboration University of Turin and … · 2018. 11. 16. · Nicol...

  • Transverse momentum spectra of π, K and p in small collision systems:search for collective phenomena

    Nicolò Jacazio for the ALICE collaborationUniversity of Turin and INFN

    The ALICE detectorI VZERO detectors

    trigger and

    centrality/multiplicity

    Main detectors for PID:

    I Inner tracking system (ITS) I Time projection chamber (TPC)

    I Time of flight (TOF) I High momentum PID (HMPID)

    Measuring the event multiplicityVZERO percentiles

    Event multiplicity at forward-rapidity obtained measuring the signal in the

    two V0 detectors and dividing its distribution into percentile-based classes

    Counting tracksEvent multiplicity at mid-rapidity (|η| < 0.8) obtained by counting tracksreconstructed in the barrel detectors and segments of tracks reconstructed

    with the SPD detector to increase the acceptance

    VZERO Amplitude (a.u.)0 5000 10000 15000 20000

    Ev

    en

    ts

    -210

    -110

    1

    10

    210

    Data

    Glauber fit

    0-5

    %

    5-1

    0%

    10

    -20

    %

    20

    -30

    %

    30

    -40

    %

    40

    -50

    %

    50

    -60

    %

    0 500 1000

    10

    210

    70

    -80

    %

    60

    -70

    %

    ALI−PUB−8808 [2]

    VZERO-A amplitude (a.u.)0 100 200 300 400 500 600 700 800 900

    Events

    (a.u

    .)

    1

    10

    210

    310

    410

    0-5%

    5-10%

    10-20%

    20-40%

    40-60%

    60-80%

    80-100%

    = 5.02 TeVNN

    sALICE p-Pb at 0-5%5-10%10-20%20-40%40-60%60-80%80-100%

    03/05/2013

    ALI−PERF−51387

    chN0 10 20 30 40 50 60 70

    )ch

    NP

    (

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    1

    ALICE pp

    > 0.15 GeVT

    p| < 0.8, η > 0, |chN = 7 TeV, s

    ALI−PUB−59106 [3]

    PID strategiesITS

    )c (GeV/p

    0.07 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5

    m)

    µ (

    ke

    V/3

    00

    x/d

    EIT

    S d

    0

    100

    200

    300

    400

    500

    600

    700

    05/03/2013

    TeV 5.02 = NN

    sp-Pb

    π

    e

    K p

    ALI−PERF−46922

    I Specific energy-loss in the ITS vs momentumI dE/dx resolution for the ITS ∼ 10% (p–Pb)

    TPC

    )c (GeV/p

    0.2 0.3 0.4 1 2 3 4 5 6 7 8 910

    (arb

    . u

    nits)

    x/d

    ET

    PC

    d

    0

    100

    200

    300

    400

    500

    600

    700

    π

    e

    K

    p d t

    05/03/2013

    TeV 5.02 = NNsp-Pb

    ALI−PERF−46927

    I Specific energy-loss in the TPC vs momentumI dE/dx resolution for the TPC ∼ 5% (p–Pb)

    TOF

    p-Pb minimum bias

    p

    K

    π

    p

    K

    π

    = 5.02 TeVNN

    sp-Pb

    5/03/2013

    (GeV/c)p0 1 2 3 4 5

    βT

    OF

    0.2

    0.4

    0.6

    0.8

    1

    = 5.02 TeVNN

    sp-Pb

    5/03/2013

    π

    K

    p

    K

    p

    ALI−PERF−46936

    I Particle velocity β measured by TOF vsmomentum

    I TOF time resolution ∼ 85− 120 ps depending

    on multiplicity (p–Pb)

    HMPID

    )cp (GeV/0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    HM

    PID

    Chere

    nkov a

    ngle

    (ra

    d)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    π

    K

    p

    TeV 7 = spp

    ALI−PUB−72451 [5]

    I Mean Cherenkov angle vs momentumI 3σ separation for π-K for pT < 3 GeV/c

    I 3σ separation for p-K for pT < 5 GeV/c

    ResultsSpectra in pp

    The multiplicity in pp can

    be quantified by the ratio:

    zraw =(N rawch )limit〈N rawch 〉mult>0

    〈N rawch 〉 = 9.6, |η| < 0.8

    N rawch zraw

    7-12 0.7-1.313-19 1.4-2.020-28 2.1-2.929-39 3.0-4.140-49 4.2-5.150-59 5.2-6.260-71 6.3-7.472-82 7.5-8.6

    I Multiplicity dependenceof the spectral shape

    I Spectra becomeprogressively harder as a

    function of multiplicity

    and particle mass

    → Mass ordering asexpected from

    hydrodynamics

    -1 )c

    ) (G

    eV

    /T

    pd

    y/(

    dN

    2 d

    ev

    N1/

    -210

    -110

    1

    10

    rawz

    mult > 0

    [0.7-1.4)

    [1.4-2.1)

    [2.1-3.0)

    [3.0-4.2)

    [4.2-5.2)

    [5.2-6.3)

    [6.3-7.5)

    [7.5-8.6]

    = 7 TeVspp -110

    1

    Uncertainty

    statistical

    total systematic

    mult. related syst.

    +K-210

    -110

    p

    ALICE Preliminary

    )c(GeV/T

    p

    0.5 1 1.5 2 2.5

    ratio to m

    ult. >

    0

    1

    10

    )c(GeV/T

    p

    0.2 0.4 0.6 0.8 1 1.2 1.4

    1

    10

    )c(GeV/T

    p

    0.5 1 1.5 2 2.5

    1

    10

    ALI−PREL−81642

    The Blast-Wave fitsThe blast-wave model is a simplified hydro model with the following functional form:

    E d3Ndp3 ∼ f (pt) =

    ∫ R0 mTK1 (mT cosh ρ/Tfo) I0 (pT sinh ρ) rdr

    mT =√m2 + p2T βr (r) = βs (r/R)

    n ρ = tanh−1βr

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/ -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410

    510 = 2.76 TeV

    NNsALICE, Pb-Pb,

    PRC 88, 044909 (2013)Centrality Class: 0-5%

    (100x)-π + +π

    (10x)-

    + K+K

    (1x)pp +

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.2-1.5 GeV/

    cp: 0.3-3.0 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 -π + +π

    1

    1.5-

    + K+

    K

    1

    1.5 pp +

    ALI−DER−67916 [4]

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/ -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410 = 5.02 TeVNN

    sALICE, p-Pb,

    PLB 728 (2014) 25-38V0A Multiplicity Class (Pb-side): 0-5%

    (100x)-π + +π

    (10x)-

    + K+K

    (1x)pp +

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.2-1.5 GeV/

    cp: 0.3-3.0 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 -π + +π

    1

    1.5-

    + K+

    K

    1

    1.5 pp +

    ALI−DER−67956 [1]

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    = 7 TeVsALICE, pp,

    ALICE Preliminary Multiplicity Class: [0.7, 1.4)rawz

    (100x)+π

    (10x)+K

    p (1x)

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.3-1.5 GeV/

    cp: 0.5-2.5 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 +π

    1

    1.5 +K

    1

    1.5 p

    ALI−PREL−72482

    References

    1. B.Abelev et Al. (ALICE Coll.) Phys. Lett. B728 (2014) 25-38

    2. K. Aamodt et Al. (ALICE Coll.) Phys. Rev. Lett. 106 (2011), 032301

    3. ALICE-PUBLIC-2013-001

    4. B.Abelev et Al. (ALICE Coll.) Phys. Rev. C 88, 044910 (2013)

    5. ALICE Coll. arXiv:1402.4476 [nucl-ex]

    6. E. Schnedermann, J. Sollfrank, and U. Heinz Phys. Rev. C 48, 2462 (1993)

    Spectra in p–Pb

    )c (GeV/T

    p

    0 1 2 3 4 5

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410

    -

    π + +

    π

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58037 [1] )c (GeV/Tp0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    - + K

    +K

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58041 [1] )c (GeV/Tp0 1 2 3 4 5 6 7

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -510

    -410

    -310

    -210

    -110

    1

    10

    pp +

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58045 [1]

    Spectra evolution with multiplicity in p–Pb: shown to exhibit behaviour that is qualitatively similar to both pp and

    Pb–Pb

    Particle ratios

    )c (GeV/T

    p

    0 0.5 1 1.5 2 2.5 3

    Ra

    tio

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    )c (GeV/T

    p

    0 0.5 1 1.5 2 2.5 3

    Ra

    tio

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    ALICE Preliminary

    2+syst2statuncert.=

    = 2.76 TeVNN

    sPb-Pb,

    >=13.4η/dch

    N>=1601/=45/