Download - Nicol o Jacazio for the ALICE collaboration University of Turin and … · 2018. 11. 16. · Nicol o Jacazio for the ALICE collaboration University of Turin and INFN The ALICE detector

Transcript
  • Transverse momentum spectra of π, K and p in small collision systems:search for collective phenomena

    Nicolò Jacazio for the ALICE collaborationUniversity of Turin and INFN

    The ALICE detectorI VZERO detectors

    trigger and

    centrality/multiplicity

    Main detectors for PID:

    I Inner tracking system (ITS) I Time projection chamber (TPC)

    I Time of flight (TOF) I High momentum PID (HMPID)

    Measuring the event multiplicityVZERO percentiles

    Event multiplicity at forward-rapidity obtained measuring the signal in the

    two V0 detectors and dividing its distribution into percentile-based classes

    Counting tracksEvent multiplicity at mid-rapidity (|η| < 0.8) obtained by counting tracksreconstructed in the barrel detectors and segments of tracks reconstructed

    with the SPD detector to increase the acceptance

    VZERO Amplitude (a.u.)0 5000 10000 15000 20000

    Ev

    en

    ts

    -210

    -110

    1

    10

    210

    Data

    Glauber fit

    0-5

    %

    5-1

    0%

    10

    -20

    %

    20

    -30

    %

    30

    -40

    %

    40

    -50

    %

    50

    -60

    %

    0 500 1000

    10

    210

    70

    -80

    %

    60

    -70

    %

    ALI−PUB−8808 [2]

    VZERO-A amplitude (a.u.)0 100 200 300 400 500 600 700 800 900

    Events

    (a.u

    .)

    1

    10

    210

    310

    410

    0-5%

    5-10%

    10-20%

    20-40%

    40-60%

    60-80%

    80-100%

    = 5.02 TeVNN

    sALICE p-Pb at 0-5%5-10%10-20%20-40%40-60%60-80%80-100%

    03/05/2013

    ALI−PERF−51387

    chN0 10 20 30 40 50 60 70

    )ch

    NP

    (

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    1

    ALICE pp

    > 0.15 GeVT

    p| < 0.8, η > 0, |chN = 7 TeV, s

    ALI−PUB−59106 [3]

    PID strategiesITS

    )c (GeV/p

    0.07 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5

    m)

    µ (

    ke

    V/3

    00

    x/d

    EIT

    S d

    0

    100

    200

    300

    400

    500

    600

    700

    05/03/2013

    TeV 5.02 = NN

    sp-Pb

    π

    e

    K p

    ALI−PERF−46922

    I Specific energy-loss in the ITS vs momentumI dE/dx resolution for the ITS ∼ 10% (p–Pb)

    TPC

    )c (GeV/p

    0.2 0.3 0.4 1 2 3 4 5 6 7 8 910

    (arb

    . u

    nits)

    x/d

    ET

    PC

    d

    0

    100

    200

    300

    400

    500

    600

    700

    π

    e

    K

    p d t

    05/03/2013

    TeV 5.02 = NNsp-Pb

    ALI−PERF−46927

    I Specific energy-loss in the TPC vs momentumI dE/dx resolution for the TPC ∼ 5% (p–Pb)

    TOF

    p-Pb minimum bias

    p

    K

    π

    p

    K

    π

    = 5.02 TeVNN

    sp-Pb

    5/03/2013

    (GeV/c)p0 1 2 3 4 5

    βT

    OF

    0.2

    0.4

    0.6

    0.8

    1

    = 5.02 TeVNN

    sp-Pb

    5/03/2013

    π

    K

    p

    K

    p

    ALI−PERF−46936

    I Particle velocity β measured by TOF vsmomentum

    I TOF time resolution ∼ 85− 120 ps depending

    on multiplicity (p–Pb)

    HMPID

    )cp (GeV/0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    HM

    PID

    Chere

    nkov a

    ngle

    (ra

    d)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    π

    K

    p

    TeV 7 = spp

    ALI−PUB−72451 [5]

    I Mean Cherenkov angle vs momentumI 3σ separation for π-K for pT < 3 GeV/c

    I 3σ separation for p-K for pT < 5 GeV/c

    ResultsSpectra in pp

    The multiplicity in pp can

    be quantified by the ratio:

    zraw =(N rawch )limit〈N rawch 〉mult>0

    〈N rawch 〉 = 9.6, |η| < 0.8

    N rawch zraw

    7-12 0.7-1.313-19 1.4-2.020-28 2.1-2.929-39 3.0-4.140-49 4.2-5.150-59 5.2-6.260-71 6.3-7.472-82 7.5-8.6

    I Multiplicity dependenceof the spectral shape

    I Spectra becomeprogressively harder as a

    function of multiplicity

    and particle mass

    → Mass ordering asexpected from

    hydrodynamics

    -1 )c

    ) (G

    eV

    /T

    pd

    y/(

    dN

    2 d

    ev

    N1/

    -210

    -110

    1

    10

    rawz

    mult > 0

    [0.7-1.4)

    [1.4-2.1)

    [2.1-3.0)

    [3.0-4.2)

    [4.2-5.2)

    [5.2-6.3)

    [6.3-7.5)

    [7.5-8.6]

    = 7 TeVspp -110

    1

    Uncertainty

    statistical

    total systematic

    mult. related syst.

    +K-210

    -110

    p

    ALICE Preliminary

    )c(GeV/T

    p

    0.5 1 1.5 2 2.5

    ratio to m

    ult. >

    0

    1

    10

    )c(GeV/T

    p

    0.2 0.4 0.6 0.8 1 1.2 1.4

    1

    10

    )c(GeV/T

    p

    0.5 1 1.5 2 2.5

    1

    10

    ALI−PREL−81642

    The Blast-Wave fitsThe blast-wave model is a simplified hydro model with the following functional form:

    E d3Ndp3 ∼ f (pt) =

    ∫ R0 mTK1 (mT cosh ρ/Tfo) I0 (pT sinh ρ) rdr

    mT =√m2 + p2T βr (r) = βs (r/R)

    n ρ = tanh−1βr

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/ -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410

    510 = 2.76 TeV

    NNsALICE, Pb-Pb,

    PRC 88, 044909 (2013)Centrality Class: 0-5%

    (100x)-π + +π

    (10x)-

    + K+K

    (1x)pp +

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.2-1.5 GeV/

    cp: 0.3-3.0 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 -π + +π

    1

    1.5-

    + K+

    K

    1

    1.5 pp +

    ALI−DER−67916 [4]

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/ -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410 = 5.02 TeVNN

    sALICE, p-Pb,

    PLB 728 (2014) 25-38V0A Multiplicity Class (Pb-side): 0-5%

    (100x)-π + +π

    (10x)-

    + K+K

    (1x)pp +

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.2-1.5 GeV/

    cp: 0.3-3.0 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 -π + +π

    1

    1.5-

    + K+

    K

    1

    1.5 pp +

    ALI−DER−67956 [1]

    0 1 2 3 4 5 6

    ]-2 )

    c)

    [(G

    eV

    /y

    dT

    p/(

    dN

    2 d

    Tp

    π 1

    /2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    = 7 TeVsALICE, pp,

    ALICE Preliminary Multiplicity Class: [0.7, 1.4)rawz

    (100x)+π

    (10x)+K

    p (1x)

    Blast-Wave

    global fit range

    c: 0.5-1.0 GeV/π

    cK: 0.3-1.5 GeV/

    cp: 0.5-2.5 GeV/

    )c (GeV/T

    p

    0 1 2 3 4 5 6

    data

    / m

    odel

    1

    1.5 +π

    1

    1.5 +K

    1

    1.5 p

    ALI−PREL−72482

    References

    1. B.Abelev et Al. (ALICE Coll.) Phys. Lett. B728 (2014) 25-38

    2. K. Aamodt et Al. (ALICE Coll.) Phys. Rev. Lett. 106 (2011), 032301

    3. ALICE-PUBLIC-2013-001

    4. B.Abelev et Al. (ALICE Coll.) Phys. Rev. C 88, 044910 (2013)

    5. ALICE Coll. arXiv:1402.4476 [nucl-ex]

    6. E. Schnedermann, J. Sollfrank, and U. Heinz Phys. Rev. C 48, 2462 (1993)

    Spectra in p–Pb

    )c (GeV/T

    p

    0 1 2 3 4 5

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    410

    -

    π + +

    π

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58037 [1] )c (GeV/Tp0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -410

    -310

    -210

    -110

    1

    10

    210

    - + K

    +K

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58041 [1] )c (GeV/Tp0 1 2 3 4 5 6 7

    ]

    -2 )c

    ) [(

    GeV

    /y

    dT

    p/(

    dN

    2)

    dT

    1/(

    2e

    vN

    1/

    -510

    -410

    -310

    -210

    -110

    1

    10

    pp +

    = 5.02 TeVNNsALICE, p-Pb,

    < 0.5CMS

    y0 <

    V0A Multiplicity Classes(Pb-side)

    0-5% (64x)

    5-10% (32x)

    10-20% (16x)

    20-40% (8x)

    40-60% (4x)

    60-80% (2x)

    80-100% (1x)

    individual fit

    ALI−PUB−58045 [1]

    Spectra evolution with multiplicity in p–Pb: shown to exhibit behaviour that is qualitatively similar to both pp and

    Pb–Pb

    Particle ratios

    )c (GeV/T

    p

    0 0.5 1 1.5 2 2.5 3

    Ra

    tio

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    )c (GeV/T

    p

    0 0.5 1 1.5 2 2.5 3

    Ra

    tio

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    ALICE Preliminary

    2+syst2statuncert.=

    = 2.76 TeVNN

    sPb-Pb,

    >=13.4η/dch

    N>=1601/=45/