Navier-Stokes Equations - Information Management …mefm/me19b/handouts/Equations.pdfIn spherical...

2
Navier-Stokes Equations In cylindrical coordinates, (r, θ, z ), the continuity equation for an incompressible fluid is 1 r ∂r (ru r )+ 1 r ∂θ (u θ )+ ∂u z ∂z =0 In cylindrical coordinates, (r, θ, z ), the Navier-Stokes equations of motion for an incompress- ible fluid of constant dynamic viscosity, μ, and density, ρ, are ρ Du r Dt - u 2 θ r = - ∂p ∂r + f r + μ 5 2 u r - u r r 2 - 2 r 2 ∂u θ ∂θ ρ Du θ Dt + u θ u r r = - 1 r ∂p ∂θ + f θ + μ 5 2 u θ - u θ r 2 + 2 r 2 ∂u r ∂θ ρ Du z Dt = - ∂p ∂z + f z + μ 5 2 u z where u r ,u θ ,u z are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, f r ,f θ ,f z are the body force components in the r, θ, z directions and the operators D/Dt and 5 2 are D Dt = ∂t + u r ∂r + u θ r ∂θ + u z ∂z 5 2 = 2 ∂r 2 + 1 r ∂r + 1 r 2 2 ∂θ 2 + 2 ∂z 2 and for an incompressible, Newtonian fluid σ rr = -p +2μ ∂u r ∂r ; σ θθ = -p +2μ 1 r ∂u θ ∂θ + u r r σ zz = -p +2μ ∂u z ∂z σ = μ 1 r ∂u r ∂θ + ∂u θ ∂r - u θ r ; σ rz = μ ∂u r ∂z + ∂u z ∂r σ θz = μ 1 r ∂u z ∂θ + ∂u θ ∂z **************************************************** 1

Transcript of Navier-Stokes Equations - Information Management …mefm/me19b/handouts/Equations.pdfIn spherical...

Navier-Stokes Equations

In cylindrical coordinates, (r, θ, z), the continuity equation for an incompressible fluid is

1

r

∂r(rur) +

1

r

∂θ(uθ) +

∂uz∂z

= 0

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompress-ible fluid of constant dynamic viscosity, µ, and density, ρ, are

ρ

[DurDt− u2

θ

r

]= −∂p

∂r+ fr + µ

[52ur −

urr2− 2

r2

∂uθ∂θ

]

ρ

[DuθDt

+uθurr

]= −1

r

∂p

∂θ+ fθ + µ

[52uθ −

uθr2

+2

r2

∂ur∂θ

]

ρDuzDt

= −∂p∂z

+ fz + µ52 uz

where ur, uθ, uz are the velocities in the r, θ, z cylindrical coordinate directions, p is thepressure, fr, fθ, fz are the body force components in the r, θ, z directions and the operatorsD/Dt and 52 are

D

Dt=

∂t+ ur

∂r+uθr

∂θ+ uz

∂z

52 =∂2

∂r2+

1

r

∂r+

1

r2

∂2

∂θ2+

∂2

∂z2

and for an incompressible, Newtonian fluid

σrr = −p+ 2µ∂ur∂r

; σθθ = −p+ 2µ

(1

r

∂uθ∂θ

+urr

)σzz = −p+ 2µ

∂uz∂z

σrθ = µ

(1

r

∂ur∂θ

+∂uθ∂r− uθ

r

); σrz = µ

(∂ur∂z

+∂uz∂r

)σθz = µ

(1

r

∂uz∂θ

+∂uθ∂z

)

****************************************************

1

In spherical coordinates, (r, θ, φ), the continuity equation for an incompressible fluid is :

1

r2

∂r

(r2ur

)+

1

r sin θ

∂θ(uθ sin θ) +

1

r sin θ

∂uφ∂φ

= 0

In spherical coordinates, (r, θ, φ), the Navier-Stokes equations of motion for an incompressiblefluid with uniform viscosity are:

ρ

[DurDt−u2θ + u2

φ

r

]= −∂p

∂r+ fr + µ

[52ur −

2urr2− 2

r2

∂uθ∂θ− 2uθ cot θ

r2− 2

r2 sin θ

∂uφ∂φ

]

ρ

[DuθDt

+uθurr−u2φ cot θ

r

]= −1

r

∂p

∂θ+ fθ +µ

[52uθ +

2

r2

∂ur∂θ− uθr2 sin θ sin θ

− 2 cot θ

r2 sin θ

∂uφ∂φ

]

ρ

[DuφDt

+uφurr

+uθuφ cot θ

r

]= − 1

r sin θ

∂p

∂φ+fφ+µ

[52uφ +

2

r2 sin θ

∂ur∂φ− uφr2 sin θ sin θ

+2 cot θ

r2 sin θ

∂uθ∂φ

]where ur, uθ, uφ are the velocities in the r, θ, φ directions, p is the pressure, ρ is the fluiddensity and fr, fθ, fφ are the body force components. The Lagrangian or material derivativeis

D

Dt=

∂t+ ur

∂r+uθr

∂θ+

uφr sin θ

∂φ

and the Laplacian operator is

52 =1

r2

∂r

(r2 ∂

∂r

)+

1

r2 sin θ

∂θ

(sin θ

∂θ

)+

1

r2 sin θ sin θ

∂2

∂2φ

and for an incompressible, Newtonian fluid

σrr = −p+ 2µ∂ur∂r

; σθθ = −p+ 2µ

(1

r

∂uθ∂θ

+urr

)

σφφ = −p+ 2µ

(1

r sin θ

∂uφ∂φ

+urr

+uθ cot θ

r

)σrθ = µ

(r∂

∂r

(uθr

)+

1

r

∂ur∂θ

); σrφ = µ

(1

r sin θ

∂ur∂φ

+ r∂

∂r

(uφr

))σθφ = µ

(1

r sin θ

∂uθ∂φ

+sin θ

r

∂θ

( uφsin θ

))

2