N. Shirtcliffe G. McHale M. Newton S. Aqil Y. Erbil ... · Ken Love Ken Love . N. Shirtcliffe G....

15
N. Shirtcliffe G. McHale M. Newton S. Aqil Y. Erbil Analysis of the Evaporation of Water Droplets from Textured Surfaces Neil Shirtcliffe, Sanaa, Aqil, Glen McHale, Michael Newton and Y. Erbil Lei Zhai et. Al.

Transcript of N. Shirtcliffe G. McHale M. Newton S. Aqil Y. Erbil ... · Ken Love Ken Love . N. Shirtcliffe G....

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    Analysis of the Evaporation of Water Droplets from Textured

    Surfaces

    Neil Shirtcliffe, Sanaa, Aqil, Glen McHale, Michael Newton and Y. Erbil

    Lei Zhai et. Al.

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    NormalWenzel, total contact

    sr r θθ coscos =

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    NormalCassie-BaxterPartial contact

    ( )11 1 fCosfCos sr −−= θθ

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    Richard Burkmar 2004 Rosemary Calvert

    Ken Love

    Ken Love

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    θθθθ

    θθθθ

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    cDRdt

    dVS

    CL ∆−= πρ 4

    ( )θπρ cfDRdt

    dVS

    CL ∆−= 4

    ( ) ( )oPBbL

    ePB Hr

    ctDueueue

    u

    eH θ

    ρθ +∆−=++++

    +−≡

    22

    3210 2)1(log

    1

    Spherical drop in free space

    Picknett and Bexon, drop on a surface

    Approximation for 90 to 180°

    cD∆u(t)=cosθ(t)

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    0

    30

    60

    90

    120

    150

    180

    0 200 400 600 800 1000 1200 14000.0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.8

    Time, s

    Con

    tact

    Ang

    le,

    θθ θθo

    Diam

    eter or H

    eigh

    t, mm

    1 2 3

    d

    h

    θ

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    For Stage 1 it is possible to model the evaporation with a constant contact radius, 2, 3.

    ( )L

    LV cfD

    dt

    dA

    ρθπ ∆−=

    8

    3

    3.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    8

    0 100 200 300 400 500 600 700 800

    Time/s

    A/m

    m2

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    0.0

    1.5

    3.0

    4.5

    6.0

    7.5

    9.0

    0 400 800 1200 1600 2000

    Time, s

    D∆∆ ∆∆

    ct+k

    , x10

    -4 k

    g m

    -1

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    130.0

    130.5

    131.0

    131.5

    132.0

    132.5

    133.0

    1800 2000 2200 2400 2600 2800 3000 3200

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    Time, s

    Con

    tact

    Ang

    le,

    θθ θθo

    Diam

    eter or H

    eigh

    t, mm

    Stage 2

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    ∆+−=∆b

    b

    r

    r)cos2(sin θθθ

    θθ

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    d)c)a) b)

    e) f) g) h)

    Drop Collapse

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    0

    30

    60

    90

    120

    150

    180

    0 200 400 600 800 1000 1200 1400

    0.0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.8

    Time, s

    Con

    tact

    Ang

    le,

    qo

    Diam

    eter or H

    eig

    ht, m

    m

  • N. Shirtcliffe G. McHale

    M. Newton S. Aqil Y. Erbil

    Values of D calculated using two different approxim ations are very close to literature values, the cooling ef fect of the drop drying could not be calculated.

    The Drying followed the predicted pattern initially

    Despite this drops on Super-hydrophobic surfaces la st longer (on leaves the volume is increased by collec ting water over the whole surface).