Mo#vaon’ -...

15

Transcript of Mo#vaon’ -...

Page 1: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’
Page 2: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Mo#va#on  •  We  want  to  es#mate  the  yield  of  ϒ  states.  –  Cross  sec#ons,  Ra#os  ϒ(3S)/ϒ(1S),  ϒ(2S+3S)/ϒ(1S),  etc.  

•  ϒ(3S)  signal  is  small!  –   ϒ(1S)  cross  sec#on  BRxdσ/dy  ~  680  pb  at  √s=1.8  TeV  –  Ra#os  (BR  x  σ(nS))/(BR  x  σ(1S)):  

–  2011  CMS  DATA:ϒ(1S)  signal  in  peripheral  bins  ~  100  counts  –  Expect  excited  states  to  be  suppressed  more  than  ground  state:  3S  signal  is  ~  10  counts.  

– Aim:  Es#mate  upper  limit  on  signals  (and  ra#os)  for  peripheral  bin.  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   2  

Ra#o     √s=38  GeV   √s=1.8  TeV  

ϒ(2S)/ϒ(1S)     0.28     0.26  

ϒ(3S)/ϒ(1S)     0.18   0.14  

Page 3: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Procedure  •  Create  a  toy  Monte  Carlo  with  Upsilon  signal  plus  background.  

–  Model  Upsilon  1S  signal  with  Gaussian  •  mean  mass  =  9.46  GeV/c2,  width  =  0.092  GeV/c2  

–  Model  Background  using  erf  x  exponen#al  •  Calculate  upper  limit  bin-­‐by-­‐bin  

–  Use  Bayesian  confidence  interval  •  Guillermo  is  studying  CLs.  Expect  that  both  approaches  will  give  similar  results.  

•  Check  behavior:  –  Does  upper  limit  increase  in  1S  signal  region?  –  Does  it  handle  properly  cases  when  background  “fluctuated  down”  (less  background  than  expected)?  

–  Do  “1-­‐sigma”  intervals  roughly  correspond  to  sta#s#cal  error  bars  on  background  in  signal-­‐free  region?  

–  Do  90%  and  95%  intervals  give  progressively  larger  upper  limits?  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   3  

Page 4: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

ϒ  mass  distribu#on  in  peripheral  bin  

•  From  Guillermo’s  analysis:  – Peripheral  bin:    •  60-­‐100%  centrality.  

– Sta#s#cs:  ~654  counts.  – erf  parameters:  •  erf  mean:  8.32  GeV/c2  

•  erf  width:  1.14  GeV/c2  

– Bin  width:  0.07  GeV/c2  – Range:  7  –  14  GeV/c2  – Counts  in  highest  bin  ~  60  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   4  

Page 5: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Signal  and  Background  Func#ons  

•  Signal:  Gaussian  •  Background:  erf  x  exponen#al  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   5  

Page 6: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Signal  and  Background  Histograms  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   6  

•  Signal:  Throw  ~190  counts  randomly  taken  from  signal  Gaussian  •  Background:Throw  ~570  counts  randomly  taken  from  “erf  x  exp”  

Page 7: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Toy  MC  signal+background  

•  Obtain  histogram  of  signal  +  background  •  Roughly  matches  Guillermo’s  peripheral  bin  stats.  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   7  

Page 8: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Calcula#on  of  Upper-­‐Limit  •  Two  approaches:  “Frequen#st”  vs.  “Bayesian”  

–  PDG  J.  Phys.  G.  37  (2010)  075021,  Ch.  33  •  Bayesian  intervals  for  Poisson  variables.  

–  Coun#ng  experiment.  –  Observe  n  total  counts  in  a  given  bin.  –  Expect  a  total  of  b  counts  due  to  known  background  

sources  (e.g.  combinatorics).  –  Likelihood  that  we  observe  n  total  counts  is  Poisson  

distributed:  

•  Upper  limit  sup  at  confidence  level  1-­‐α  is  obtained  by:  

–  Equa#on  for  α:    

–  Numerical  solu#on.  

–  Note:  the  “prior”,  π(s),  in  this  approach  simply  restricts  s  to  posi#ve  values,  and  is  regarded  as  providing  an  interval  whose  frequen#st  proper#es  can  be  studied.  

1/31/12   Manuel  Calderón  de  la  Barca  Sánchez   8  

L(n | s)=s+b( )n

n!e− s+b( )

1−α =L(n | s)π (s)ds

−∞

sup∫L(n | s)π (s)ds

−∞

π (s)= 0 s < 01 s ≥ 0

#$%

α = e−sup

sup +b( )mm!

m=0

n

bmm!

m=0

n

Page 9: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Digression  on  calcula#ng  factorials  •  What’s  wrong  with  the  following  code?  

unsigned  long  factorial(unsigned  long  n)  {      return  (n  ==  1  ||  n  ==  0)  ?  1  :  factorial(n  -­‐  1)  *  n;  }  

•  Nothing...  but  runs  into  machine  precision  issues!  –  Can’t  do  21!,  computer  runs  out  of  digits.  

•  S#rling’s  formula  for  approximate  factorials:  

–  Valid  for  n>10  or  so.  •  Difference  at  n=20  is  0.4%  

•  But  also  runs  into  machine  precision  (nn)...  –  Can’t  do  143!,  this  number  is  >  10245  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   9  

n!≈ 2πnnne−n

Page 10: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

α(s;  n,  b)  

•  Probability:    –  for  a  given  n,  b,  alpha  should  decrease  monotonically  with  increasing  s.  

–  for  a  given  n,  s,  alpha  should  decrease  monotonically  with  increasing  b.  

•  1-­‐σ  :  α  =  0.3173  •  90%  CL:  α  =  0.1  •  95%  CL:  α  =  0.05  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   10  

Page 11: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Comparison,  n=5  vs  n=10  

•  For  n=b  (i.e.  observe  exactly  the  expected  background),  at  a  given  α,  sup  is  higher  for  higher  n.  –  Larger  fluctua#ons  allow  for  a  larger  signal  to  be  buried  in  them.  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   11  

Page 12: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Upper  limits  

•  Le{:  Invariant  mass  distrub#on  •  Right:  Upper  limit  on  a  possible  signal  above  background  

expecta#on.  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   12  

Page 13: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Upper  limits:  α=0.3713,  0.1,  0.05  

•  Upper  limits  should  get  larger  with  decreasing  α.  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   13  

Page 14: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Upper  limits:  α=0.3713,  0.1,  0.05  

•  Adding  upper  limit  on  top  of  background  expecta#on  (red  line)  •  Upper  limit  for  α=0.3173  should  be  similar  to  1-­‐σ  error  bars  in  region  where  there  is  no  

signal.  •  Upper  limits  should  get  larger  with  decreasing  α.  •  Does  not  give  bad  results  when  observe  less  counts  than  expected.  

–  Upper  limit  decreases,  but  is  always  posi#ve.  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   14  

Page 15: Mo#vaon’ - nuclear.ucdavis.edunuclear.ucdavis.edu/~calderon/Presentations/UpperLimitUpsilon3S-MCBS.pdfSignal’and’Background’Func#ons’ • Signal:’Gaussian’ • Background:’erf’x’exponen#al’

Conclusions  •  Simple  approach  to  upper  limits  – Based  on  Poisson  sta#s#cs.  

•  Compare  to  approach  following  Frequen#st  CLs.  – Pursued  by  Guillermo.  –  Includes  way  to  treat  fluctua#ng  background.  

•  Can  give  a  cross  check  between  methods.  •  Note:    – D0  CL  writeup:  Expect  both  methods  to  give  very  similar  results.  

2/1/12   Manuel  Calderón  de  la  Barca  Sánchez   15