Molecular Properties and Spectroscopy - MPIA.de · PDF fileMolecular Properties and...

download Molecular Properties and Spectroscopy - MPIA.de · PDF fileMolecular Properties and Spectroscopy ... G 231-40 (white dwarf) Hebrad A&A 394, ... UV 10 9 Ly α 121.6 nm 2.4 x 10 8

If you can't read please download the document

Transcript of Molecular Properties and Spectroscopy - MPIA.de · PDF fileMolecular Properties and...

  • Molecular Properties and Spectroscopy

    Almost all of the information we have about the Universe comes from the

    study of electromagnetic radiation (light) Spectroscopy

    Isaac Newton

    Newton used the term Spectrum in context

    with his experiments on the color of light:

    The Beginning: Newton (1675)

  • Fraunhofer lines (1814)

    Joseph von Fraunhofer

  • Gustav Robert Kirchhoff

    18.03.1824-17.10.1887

    Kirchhoff and Bunsen

    Robert Wilhelm Bunsen

    31.03.1811-16.08.1899

    Spectroscopy pioneers in Heidelberg

  • The Birth of Spectral Analysis: Kirchoff (1860)sodium

  • Electromagnetic Spectrum

    400 nm 800 nm

    photon energy

    1021 1018 1016 1014 1012 1010 108 106 104

    Frequency (Hz)

  • Unit Conversion

    Energy E of a photon: E = h (in eV or J)

    Wave length: = c/ = hc/E (in nm)

    h = 6.626010-34 Jsh = 4.1357x10-15 eVs

    J eV cm-1 K

    1 J 1 6.24146 x 1018 5.03404x1022 7.24290 x 1022

    1 eV 1.60219 x 10-19 1 8.06548x103 1.16045 x 104

    1 cm-1 1.98648 x 10-23 1.23985 x 10-4 1 1.43879

    1 K 1.38066 x 10-23 8.61735 x 10-5 6.95030 x 10-1 1

    Example:

    Level spacing: 3.1 eV = 4.9667 x 10-19 J

    Photon frequency: 7.4957 x 1014 s-1

    Wavelength: = 4 x 10-7 m = 400 nm

    Wavenumbers: = 1/ = 25000 cm-1

    Wave numbers: = 1/ (cm-1)

    c= 2.99792 x 108 m/s

  • Basics: Atomic Hydrogen

    with

    2

    kin. energy pot. energy

    Schrdinger Equation

    1

    2

    0

    Hamiltonian

    Eigenvalue equation:

    Discrete solutions with quantum numbers:

    n : principle (energy) quantum number 1, 2, 3 .

    : angular momentum 0, 1, 2, , (n-1)m : magnetic quantum number - , 1 , . ,

  • Atomic Hydrogen: Transitions

    O eV

    -13.6 eV n=1

    n=2

    n=3n=4 n=5

    n=6n

    = - R

    Energy levels:

    Discrete transitions:

    =

    L-

    12

    1.7

    nm

    H

    6

    56

    .3 n

    m

    n=3 n=2 @ 656.3 nm

    responsible for red glow in

    H II regions containing

    ionized H atoms

    Lym

    an

    Ba

    lme

    r

    Pa

    sch

    en

    -3.4 eV

    -1.9 eV

  • H (656nm) emission (red glow) in HII regions

    Horsehead nebula

  • Atoms with more than one Electron

    L2S+1

    L= l1+l2

    J

    J=L+S

    P3

    L= 0+1=1

    1

    J=1+1=1

    Notation

  • Atomic Hydrogen Observations

    Emission, V630 Saggitari,Schmidtobreick A&A 432, 199 (2005)

    Danish telescope, La Cilla (Chile)

    Far Ultraviolet

    Spectroscopic Explorer (FUSE)

    operated 1999-2007

    G 231-40 (white dwarf) Hebrad A&A 394, 647 (2002)

    Lym

    an

    Lym

    an

    Balmer Series

  • Hydrogen 21cm line

    Very Large Array (VLA)Arecibo Effelsberg

    Doppler shift due to relative motion: v/c = /

  • Ly absorption, observed

    with Hubble Space Telescope

    at z =2.5

    Burles and Tytler, ApJ 507,

    732 (1998)

    Example:

    Cosmological Redshift

    The redshift z is defined as

    z = / =obs- emitemit

    The observed wavelength is shifted by: obs = emit + z emit

    Hydrogen

    Ly shifted

    to 426 nm

  • Molecular Properties

    Diatomics (2 nuclei) Polyatomics (>2 nuclei)

    Homonuclear (e.g. H2)

    Heteronuclear (e.g. OH, CO)

    Molecular binding energies are relatively small (1-5 eV),

    smaller than ionization energies (>10 eV)

    Molecules are easily destroyed and are found in cooler,

    less ionized environments.

    Present in objects with T < 8000 K Present in objects with T < 4000 K

  • The Born-Oppenheimer Approximation

    The Born Oppenheimer Approximation assumes that electrons in a molecule

    move much faster than the nuclei, and adapt instantaneously, finding the

    lowest potential energy for each nuclear configuration. Therefore, it is

    possible to calculate an electronic energy for each nuclear configuration,

    considering the nuclei frozen.

    The nuclear Hamiltonian is:

    nuclear masses electronic potential

    Coulomb potential

    between the nuclei

  • H2 Molecular Orbitals

    Electron orbitals of H atoms

  • Antibonding orbital

    Energy [eV]

    R Internuclear

    Distance [a0]

    Bonding orbital

    H2 potential energy curves

    -4.5 eV

    Re = 1.4 a0

    1

    2

  • Molecular Vibration: Harmonic Oscillator Potential

    Anharmonicity

    leads to lowering

    of energy levels

    1

    2

    Harmonic Oscillator Potentail

    ! " 1

    2#

    Energy levels

    transitions

    Zero point energy ! 1

    2#

  • H2 electronic potential curves

    Internuclear distance Ra [a0]

    Electronically

    excited states

    Bonding orbital

    Antibonding

    orbital

    Notation

    2S+1 (+/-)

    S: spin quantum number

    : projection of orbital angular momentum along

    internuclear axis

    (+/-): reflection symmetryu/g: parity

    (g/u)

  • Energy [eV]

    R Internuclear

    Distance [a0]

    Electronic and Vibrational Excitation

    -4.5 eV

    Pure

    electronic

    transition

    Transition

    With vibronic

    coupling

    v=0v=1

    v=2

    v=0v=1

    v=2

  • Polyatomic Molecules: Example H3+

    Simplest Polyatomic molecule

    Consists of 3 protons and 2 electrons

    3 internuclear distances

    3 vibrational degrees of freedom

    Electronic Potential curve is a Hyper-Surface of 3 coordinates,

    can not be plotted!

  • Normal Modes of Vibration

    Normal modes:

    independent modes of vibration

    diagonalize the Molecular Hamiltonian

    linear combinations of the internuclear distances

    Finding Normal Modes: Use Molecular Symmetry / Group Theory

  • The Normal Modes of H3+

    Degenerate (the same frequency)

  • bending mode 2breathing modebending mode 1

    +90 phase -90 phase

    The Normal Modes of H3+

  • H3+ vibrational level scheme

  • Translational degrees of freedom

    Rotational degrees of freedom

    Vibrational degrees of freedom

    Linear Non-linear

    3 3

    2 3

    In general molecules have 3N degrees of freedom

    3N -5 3N -6

    Vibrations bear a lot of Potential For Complexity

    But: Symmetry helps!

    H3+ : 3 vibrational degrees of freedom 2 distinct normal modes

    C60: 174 vibrational degrees of freedom 46 normal modes

  • Rotations: the Rigid Rotor

    m1

    m2center of mass

    Energy levels

    rotational constant

    $

    2%

    & = $'(' + 1)

    Diatomic or Linear Polyatomic Molecules

    rotational

    quantum

    number

    Moment of inertia

    % =*+,,,

    r1

    r2

    Large and heavy molecules have

    small rotational constants!

  • Rigid Rotor Levels and Transitions

    Energy levels

    & $'(' 1)

    Selection rule:

    ' .1

    & ' 1 & ' $ ' 1 ' 2 '(' 1)

    Transitions:

    2$ ' 1

    frequency2B 4B 6B 8B

    10 21 32 43

  • P and R branch

    P-Branch J=-1 R-Branch J=+1

  • P and R branch

    transmission

    100

    0

    Rotation-Vibration Spectrum of HBr

    R-BranchP-Branch

  • General Rotational Structure of Polyatomic Molecules

    A

    B

    C

    Any arbitraryily shaped solid body has three principal axes of

    rotation (A

  • Energy Level Diagram of H2O

  • Overview

    Electronic

    Transitions:

    E = 1-15 eV

    Visible-UV

    Vibrational

    Transitions:

    E = 0.1-1 eV

    Infrared

    Rotational

    Transitions:

    E = 0.01-0.1 eV

    (sub)-Millimeter

  • Einstein Coefficients

    E1

    E2h

    B1

    2

    B2

    1

    A2

    1

    : energy density of the radiation field

    AbsorptionSpontaneous

    emission

    Induced

    emission

    Equilibrium:

    absorbed photons = emitted photons

    $6 3 8 $86

    6 = /9

    19:19

    Solving for (v):

    Using Boltzmann radiation law:

    9

    9= ;:

    ?@

    AB 8= 8;=

    ;

    ?@

    AB

    6 = /9

    19;=;?@AB:19

    CD

    ;=;?@AB:

    (1)

    (2)

    (3)

    Insert (3) into (2):

    (4)

  • Einstein Coefficients

    E1

    E2h

    B1

    2

    B2

    1

    A2

    1

    : energy density of the radiation field

    AbsorptionSpontaneous

    emission

    Induced

    emission6

    3$

    ;=;?EAB 1

    (4)

    Plancks thermal radiation law

    6 = 8G

    HI

    >?EAB 1 (5)

    8GHI

    >?EAB 1

    =3$

    ;=;< $$ >

    ?EAB 1

    Equating (4) and (5):

    (6)

    $= KK$ 3= LMNEOPO $ (7)

    Lifetimes and Einstein A:

    The lifetime T of an initial state i

    Is given by the sum of the Einstein

    coefficients summed over all final

    states

    1

    AiffT =

  • Einstein A21 coefficient

    Einstein B12 coefficient

    Einstein B12 coefficient

    Absorption cross section

    Line strength

    Transition dipole moment

    Oscilator strength

    Hillborn,

    Am. J. Phys.

    50, 982 (1982)

    Level 2 (up)

    Level 1 (low)

  • What makes tr