MODN and the ∆Σ Toolbox - University of...

23
ECE1371 Advanced Analog Circuits Lecture 2 MODN and the ∆Σ Toolbox Richard Schreier [email protected] Trevor Caldwell [email protected] ECE1371 2-2 Course Goals Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system— a delta-sigma ADC Develop circuit insight through brief peeks at some nifty little circuits The circuit world is filled with many little gems that every competent designer ought to know.

Transcript of MODN and the ∆Σ Toolbox - University of...

Page 1: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 Advanced Analog CircuitsLecture 2

MODN and the ∆Σ Toolbox

Richard [email protected]

Trevor [email protected]

ECE1371 2-2

Course Goals

• Deepen understanding of CMOS analog circuitdesign through a top-down study of a modernanalog system— a delta-sigma ADC

• Develop circuit insight through brief peeks atsome nifty little circuits

The circuit world is filled with many little gems thatevery competent designer ought to know.

Page 2: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-3

Date Lecture (M 13:00-15:00) Ref Homework

2015-01-05 RS 1 MOD1 & MOD2 ST 2, 3, A 1: Matlab MOD1&2

2015-01-12 RS 2 MODN + ∆Σ Toolbox ST 4, B 2: ∆Σ Toolbox

2015-01-19 RS 3 Example Design: Part 1 ST 9.1, CCJM 14 3: Sw.-level MOD2

2015-01-26 RS 4 Example Design: Part 2 CCJM 18

2015-02-02 TC 5 SC Circuits R 12, CCJM 14 4: SC Integrator

2015-02-09 TC 6 Amplifier Design

2015-02-16 Reading Week– No Lecture

2015-02-23 TC 7 Amplifier Design 5: SC Int w/ Amp

2015-03-02 RS 8 Comparator & Flash ADC CCJM 10

Project

2015-03-09 TC 9 Noise in SC Circuits ST C

2015-03-16 RS 10 Advanced ∆Σ ST 6.6, 9.4

2015-03-23 TC 11 Matching & MM-Shaping ST 6.3-6.5, +

2015-03-30 TC 12 Pipeline and SAR ADCs CCJM 15, 17

2015-04-06 Exam Proj. Report Due Friday April 10

2015-04-13 Project Presentation

ECE1371 2-4

NLCOTD: Dynamic Flip-Flop• Standard CMOS version

• Can the circuit be simplified?Is a complementarty clock necessary?

D Q

CKQ

Page 3: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-5

Highlights(i.e. What you will learn today)

1 Nth-order modulator (MOD N )

2 High-level design with the ∆Σ Toolbox

ECE1371 2-6

0. Review: A ∆Σ ADC System

∆ΣModulator

DigitalDecimator

U

V

W

LoopFilter

DAC

U V

E

V (z ) = STF (z )U( z ) + NTF (z )E (z )

STF (z ): signal transfer functionNTF (z ): noise transfer functionE (z ): quantization error

desired

shaped

Nyquist-ratePCM Data

noise

f s 2⁄f B

f s 2⁄f B

f B

signal

Y

Page 4: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-7

Review: MOD1

QUE

NTF z( ) 1 z 1––( )=STF z( ) 1=z-1

z-1

V

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4NTF ej 2πf( ) 2

Normalized Frequency ( f )

ω2≅

NTF poles & zeros:

IQNPπ2σe

2

3------------- OSR( ) 3–=

ECE1371 2-8

Review: MOD2

Q1z−1

zz−1

U V

E

NTF z( ) 1 z 1––( )2=STF z( ) z 1–=

0 0.1 0.2 0.3 0.4 0.50

8

16

NTF ej 2πf( ) 2

Normalized Frequency ( f )

ω4≅

NTF poles & zeros:

IQNPπ4σe

2

5------------- OSR( ) 5–=

Page 5: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-9

Review Summary• ∆Σ works by spectrally separating the

quantization noise from the signalRequires oversampling. .Achieved by the use of filtering and feedback.

• A binary DAC is inherently linear,and thus a binary ∆Σ modulator is too

• MOD1-CT has inherent anti-aliasing

• MOD1 has NTF (z) = 1 – z–1

⇒ Arbitrary accuracy for DC inputs;9 dB/octave SQNR-OSR trade-off.

• MOD2 has NTF (z) = (1 – z–1)2⇒ 15 dB/octave SQNR-OSR trade-off.

OSR f s 2f B( )⁄≡

ECE1371 2-10

1. MODN[Ch. 4 of Schreier & Temes]

• MODN’s NTF is the Nth power of MOD1’s NTF

Q1z−1

zz−1U Vz

z−1

NTF z( ) 1 z 1––( )N=STF z( ) z 1–=

N integrators(N–1) non-delaying, 1 delaying

Page 6: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-11

NTF Comparison

NT

Fe

j2πf

()

(dB

)

Normalized Frequency ( f )10

-310

-210

-1–100

–80

–60

–40

–20

0

20

40

MOD1

MOD2

MOD3

MOD4

MOD5

ECE1371 2-12

Predicted Performance• In-band quantization noise power

• Quantization noise drops as the (2 N+1)th powerof OSR— (6N+3) dB/octave SQNR-OSR trade-off

IQNP NTF e j 2πf( ) 2 See f( )⋅ fd

0

0.5 OSR⁄

∫=

2πf( )2N 2σe2⋅ fd

0

0.5 OSR⁄

∫≈

π2N

2N 1+( ) OSR( )2N 1+-------------------------------------------------------σe

2=

Page 7: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-13

Improving NTF Performance–NTF Zero Optimization

• Minimize the integral of over thepassband

Normalize passband edge to 1 for ease ofcalculation:

NTF 2

–1 1a–a

H f( )2

Need to find the ai which minimize

x 2 a12–( )2 x 2 a2

2–( )2 xd1–

1∫ , n = 4

x 2 x 2 a12–( )2 xd

1–1

∫ , n = 3

x 2 a12–( )2 xd

1–1

∫ , n = 2

fs/fB

the integral

ECE1371 2-14

Solutions Up to Order = 8Order

Optimal Zero PlacementRelative to fB

SQNRImprovement

1 0 0 dB

2 3.5 dB

3 0, 8 dB

4 13 dB

5 0, [Y. Yang] 18 dB

6 ±0.23862, ±0.66121, ±0.93247 23 dB

7 0, ±0.40585, ±0.74153, ±0.94911 28 dB

8 ±0.18343, ±0.52553, ±0.79667, ±0.96029 34 dB

1 3⁄±

3 5⁄±

3 7⁄ 3 7⁄( )2 3 35⁄–±±

5 9⁄ 5 9⁄( )2 5 21⁄–±±

Page 8: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-15

Topological Implication• Feedback around pairs integrators:

1z−1

zz−1

-g

1z−1

1z−1

-g

2 Delaying Integrators Non-delaying + DelayingIntegrators (LDI Loop)

Poles are the roots of

1 g 1z 1–------------

2+ 0=

i.e. z 1 j g±=

Not quite on the unit circle,but fairly close if g<<1.

Poles are the roots of1 gz

z 1–( )2--------------------+ 0=

i.e. z e jθ±=

Precisely on the unit circle,θcos 1 g 2⁄–=,

regardless of the value of g.

ECE1371 2-16

Problem: A High-Order ModulatorWants a Multi-bit Quantizer

E.g. MOD3 with an Infinite Quantizerand Zero Input

0 10 20 30 40-7

-5

-3

-1

1

3

5

7

Sample Number

v

Quantizer input getslarge, even if the

6 quantizer levels areused by a small input.

input is small.

Page 9: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-17

Simulation of MOD3-1b(MOD3 with a Binary Quantizer)

• MOD3-1b is unstable, even with zero input!

0 10 20 30 40–1

0

1

0 10 20 30 40–200

–100

0

100

200

Sample Number

v

yHUGE!

Longstringsof +1/–1

ECE1371 2-18

Solutions to the Stability ProblemHistorical Order

1 Multi-bit quantizationInitially considered undesirable because we lose theinherent linearity of a 1-bit DAC.

2 More general NTF (not pure differentiation)Lower the NTF gain so that quantization error isamplified less.Unfortunately, reducing the NTF gain reduces theamount by which quantization noise is attenuated.

3 Multi-stage (MASH) architecture

• Combinations of the above are possible

Page 10: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-19

Multi-bit QuantizationA modulator with NTF = H and STF = 1 isguaranteed to be stable if at all times,where and

• In MODN , so,

and thus

• impliesMODN is guaranteed to be stable with an N-bitquantizer if the input magnitude is less than ∆/2 = 1.This result is quite conservative.

• Similarly, guarantees that MOD N isstable for inputs up to 50% of full-scale

u u max<u max nlev 1 h 1–+= h 1 h i( )i 0=

∞∑=

H z( ) 1 z 1––( )N=h n( ) 1 a1– a2 a3– … 1–( )N aN 0…, , , , ,{ }= ai 0>

h 1 H 1–( ) 2N= =

nlev 2N= u max nlev 1 h 1–+ 1= =

nlev 2N 1+=

ECE1371 2-20

M-Step Symmetric Quantizer∆ = 2, (nlev = M + 1)

• No-overload range: ⇒

M even: mid-treadM odd: mid-rise

y

e = v – y

v

e = v – y

v

y1

M

–M

2

M

–M

–M –1 M +1 –M –1 M +1

v: odd integersfrom – M to +M

v: even integersfrom – M to +M

y nlev≤ e ∆ 2⁄≤ 1=

Page 11: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-21

Inductive Proof of Criterion• Assume STF = 1 and

• Assume for .[Induction Hypothesis]

Then⇒⇒

• So by induction for all i > 0

h 1

n∀( ) u n( ) u max≤( )e i( ) 1≤ i n<

y n( ) u n( ) h i( )e n i–( )i 1=∞∑+=

u max h i( ) e n i–( )i 1=∞∑+≤

u max h i( )i 1=∞∑+≤ u max h 1 1–+=

u max nlev 1 h 1–+=y n( ) nlev≤e n( ) 1≤

e i( ) 1≤

ECE1371 2-22

More General NTF• Instead of with ,

use a more generalRoots of B are the poles of the NTF and must beinside the unit circle.

NTF z( ) A z( ) B z( )⁄= B z( ) z n=B z( )

Moving the poles awayfrom z = 1 toward z = 0makes the gain of theNTF approach unity.

Page 12: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-23

The Lee Criterion for Stabilityin a 1-bit Modulator:

[Wai Lee, 1987]

• The measure of the “gain” of H is the maximummagnitude of H over frequency, aka the infinity-norm of H:

Q: Is the Lee criterion necessar y for stability?No. MOD2 is stable (for DC inputs less than FS)but .

Q: Is the Lee criterion sufficient to ensure stability?No. There are lots of counter-examples,but often works.

H ∞ 2≤

H ∞ maxω 0 2π,[ ]∈

H ejω( )( )≡

H ∞ 4=

H ∞ 1.5≤

ECE1371 2-24

Simulated SQNR vs.5th-order NTFs; 1-b Quant.; OSR = 32

H ∞

1 1.25 1.5 1.75 250

70

90

1 1.25 1.5 1.75 2–20

–10

H ∞

umax

(dB

FS

)S

QN

R(d

B)

0

Stable input limit dropsas increases.H ∞

H ∞

SQNR has a broad maximum

cliff!

Page 13: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-25

SQNR Limits— 1-bit Modulation

OSR

Pea

k S

QN

R (

dB)

N =

4

N =

3

N = 2

N = 1

N =

6N

= 5

N =

7N

= 8

4 8 16 32 64 128 256 512 10240

20

40

60

80

100

120

140

ECE1371 2-26

SQNR Limits for 2-bit Modulators

N = 4 N = 3 N = 2

N = 1

N =

6N

= 5

N =

7N

= 8

OSR

Pea

k S

QN

R (

dB)

4 8 16 32 64 128 256 512 10240

20

40

60

80

100

120

140

Page 14: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-27

SQNR Limits for 3-bit Modulators

N = 4 N = 3 N = 2

N = 1

N =

6N

= 5

N =

7N

= 8

OSR

Pea

k S

QN

R (

dB)

4 8 16 32 64 128 256 512 10240

20

40

60

80

100

120

140

ECE1371 2-28

Generic Single-Loop ∆Σ ADC• Linear Loop Filter + Nonlinear Quantizer:

E

L1

L0 Y VU

Inverse Relations:L1 = 1 – 1/NTF, L0 = STF / NTF

Y L0U L1V+=V Y E+=

NTF 11 L1–---------------= & STF L0 NTF⋅=

V STF U⋅ NTF E⋅+= , where

Page 15: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-29

∆Σ Toolboxhttp://www.mathworks.com/matlabcentral/fileexchange

Search for “Delta Sigma Toolbox”

NTF (and STF)available.

Specify OSR,lowpass/bandpass,

no. of Q. levels.

synthesizeNTF

realize-

predictSNR,

ABCD: state-space descriptionof the modulator.

scaleABCD

Parameters fora specifictopology.

stuffABCD

mapABCD

Time-domainsimulation andSNR measure-

ments.

simulateDSM,

calculateTF

simulateSNR

mapCtoDsimulateESLdesignHBF

Also

Manual is delsig.pdf (App. B of Schreier & Temes)

NTF

ECE1371 2-30

∆Σ Toolbox Modulator Model

L1

L0 Y VU

Quantizer:M = 1 M = 2 M = 3

Mid-tread quantizer;v: even integers [ – M,+M ]

Mid-rise quantizer;v: odd integers [ – M,+M ]

Modulator:

[ -M, +M ][ -M, +M ]

∆ = 2

NTF 11 L1–---------------=

STFL0

1 L1–---------------=

yv

y

v1

–1

2

–2

2

ee

–2 3–3 4–4y

v3

1

-1

-3

e

Loop filter can be specified by NTF orby ABCD, a state-space representation

Page 16: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-31

NTF SynthesissynthesizeNTF

• Not all NTFs are realizableCausality requires , or, in the frequencydomain, . Recall

• Not all NTFs yield stable modulatorsRule of thumb for single-bit modulators:

[Lee].

• Can optimize NTF zeros to minimize themean-square value of H in the passband

• The NTF and STF share poles, and in somemodulator topologies the STF zeros are notarbitraryRestrict the NTF such that an all-pole STF is maximallyflat. (Almost the same as Butterworth poles.)

h 0( ) 1=H ∞( ) 1= H z( ) h 0( )z 0 h 1( )z 1– …+ +=

H ∞ 1.5<

ECE1371 2-32

Lowpass Example [ dsdemo1 ]5th-order NTF, all zeros at DC

• Pole/Zero diagram:

OSR = 32;H = synthesizeNTF(5);plotPZ (H);

f = linspace(0,0.5);z = exp(2i*pi*f);H_z = evalTF (H,z);plot(f,dbv(H_z));g = rmsGain (H,0,0.5/OSR)

Page 17: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-33

Lowpass NTF

0 0.5–80

–60

–40

–20

0

rms in-band

0 1/64–60

–50

–40

Out-of-band gain = 1.5

gain = –47 dB

dB

Normalized Frequency ( f /fs)

ECE1371 2-34

Improved 5 th-Order Lowpass NTFZeros optimized for OSR=32

OSR = 32;H = synthesizeNTF (5,OSR,1);...

Zeros spread acrossthe band-of-interest tominimize the rms valueof the NTF.

optimizationflag

Page 18: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-35

Improved NTF

0 0.5–80

–60

–40

–20

0

0 1/64–80

–70

–60rms gain = –66 dB

dB

Normalized Frequency ( f /fs)

ECE1371 2-36

Bandpass ExampleOSR = 64;f0 = 1/6;H=synthesizeNTF (6,OSR,1,[], f0 );...

center frequency

[] or NaN meansuse default value,i.e. Hinf = 1.5

Page 19: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-37

Bandpass NTF and STF

0 0.5–60

–40

–20

0

NTFdB

Normalized Frequency ( f /fs)

all-pole STF with same poles as∆Σ toolbox NTF

ECE1371 2-38

Summary: NTF Selection• If OSR is high, a single-bit modulator may work

• To improve SQNR,Optimize zeros,Increase , orIncrease order.

• If SQNR is insufficient, must use a multi-bitdesign

Can turn all the above knobs to enhanceperformance.

• Feedback DAC assumed to be ideal

H ∞

Page 20: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-39

NTF-Based Simulation [ dsdemo2 ]

• In mex form; 128K points in < 0.1 sec

order=5; OSR=32;ntf = synthesizeNTF (order,OSR,1);N=2^17; fbin=959; A=0.5; % 128K pointsinput = A*sin(2*pi*fbin/N*[0:N-1]);output = simulateDSM (input,ntf);spec = fft(output.* ds_hann (N)/(N/4));plot( dbv (spec(1:N/(2*OSR))));

0 1024 2048–200

–150

–100

–50

0

FFT Bin Number (128K-point FFT)

dBF

S/N

BW

NBW=1.5 bins

ECE1371 2-40

Simulation Example Cont’d

0 0.5–120

–100

–80

–60

–40

–20

0

dBF

S/N

BW

0 50 100

–1

0

1

Time (sample number)

NBW = 1.8x10–4 fs(8k-point FFT)

u

v

Normalized Frequency ( f /fs)

Page 21: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-41

SNR vs. Amplitude: simulateSNR

Input Amplitude (dBFS)

SQ

NR

(dB

)

–100 –80 –60 –40 –20 00

20

40

60

80

100

Peak SNR is 85 dB.Max. input is –3 dBFS.

[snr amp] = simulateSNR (ntf,OSR);plot(amp,snr,'b-^');

OSR=32

ECE1371 2-42

Homework #2 (Due 2015-01-19)A. Extract code from dsdemo1 & dsdemo2 to:

1 Create a 3 rd-order NTF with zeros optimized forOSR = 32 and . Plot the poles/zerosand frequency response of your NTF.

2 Simulate an 8-step (9-level) ∆Σ modulator withthis NTF.Plot example input and output waveforms.Plot a spectrum and the predicted noise curve. *

Plot the SQNR vs. input amplitude curve andnote the maximum stable input.

B. Compose your own short question and answer it.

*. Beware that with an M-step modulator the full-scale is M.

NTF ∞ 2=

Page 22: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-43

What You Learned TodayAnd what the homework should solidify

1 Nth-order modulator (MOD N )

2 High-level design with the ∆Σ Toolbox

ECE1371 2-44

NLCOTD: True Single-PhaseDynamic FF

+ Clock not inverted anywhere

+ Small

+ Fast

D

C Q

Page 23: MODN and the ∆Σ Toolbox - University of Torontoindividual.utoronto.ca/schreier/lectures/2015/2-2.pdf · 2015-01-13 · MODN and the ∆Σ Toolbox Richard Schreier richard.schreier@analog.com

ECE1371 2-45

TSPFF Operation

D

C Q

C

C

X

Y Z

DCXYZQ

d

~d

d~d

d

Can drop inverter.(Handy if makinga divider.)

ECE1371 2-46

TSPFF Gotchas• Leakage:

Won’t work if clock is too slow.Possible high current if clock is stopped.

Need to add devices that hold the dynamic nodes ata safe value.

• No positive feedbackVulnerable to metastability.