Modern physics Chapter 3-4. Solutions to exercises · Modern physics Chapter 3-4. Solutions to...

2
Modern physics Chapter 3-4. Solutions to exercises. 3.1.1 The deBroglie wavelength is p h = λ s kgm s kgm h p / 10 89 . 1 / 10 350 10 63 . 6 27 9 34 × × × = = λ 3.2.1 E = hf = eV eV hc 620 10 6 . 1 10 0 . 2 10 0 . 3 10 63 . 6 19 9 8 34 × × × × × × = λ 3.2.2 With E = eV and p h = λ and mE p m p E 2 2 2 = = we get pm m meV h mE h 3 . 12 10 10 10 6 . 1 10 1 . 9 2 10 63 . 6 2 2 3 19 31 34 × × × × × × × = = = λ 3.2.3 and Å C 7 . 1 = λ kV volt e hc V hc C 3 . 7 10 6 . 1 10 7 . 1 10 00 . 3 10 63 . 6 19 10 8 34 × × × × × × = = = λ λ eV 3.2.4 eV = mv 2 /2; s m s m m eV / 10 21 / 10 1 . 9 10 2 . 1 10 6 . 1 2 2 6 31 3 19 × × × × × × = = v 3.2.5 The deBroglie wavelength Å m meV h m eV m h mv h 39 10 0 . 1 10 6 . 1 10 1 . 9 2 10 63 . 6 2 2 3 19 31 34 × × × × × × × = = = = λ 4.1.1 och med Einsteins relation eV 02 , 2 = Φ K hf + Φ = får vi J hc hf K 19 9 8 34 10 60 , 1 02 , 2 10 400 10 00 , 3 10 63 , 6 × × × × × × = Φ = Φ = λ = 4,9725x10 -19 – 2,02x1,60x10 -19 J = 1,7405x10 -19 J J 19 10 7 , 1 × 4.1.2 Kinetiska energin 2 2 mv K = ger hastigheten m K v 2 = 4.1.3 K = eV = 1.602x10 -19 J Einstein’s relation hf = Φ + K and with c = fλ we have K hc + Φ = λ which gives = × × × × × × = = Φ J K hc 68 . 0 10 602 . 1 10 369 10 00 . 3 10 63 . 6 19 9 8 34 λ 5.12195x10 -19 /1.602x10 -19 – 0.68 eV = 2.5 eV 4.21. The Compton wavelength m m c m h p C 15 8 27 34 10 32 . 1 10 00 . 3 10 673 . 1 10 63 . 6 × = × × × × = = λ

Transcript of Modern physics Chapter 3-4. Solutions to exercises · Modern physics Chapter 3-4. Solutions to...

Modern physics Chapter 3-4. Solutions to exercises. 3.1.1 The deBroglie wavelength is

ph

=λ skgmskgmhp /1089.1/103501063.6 27

9

34−

×≈××

==⇒λ

3.2.1 E = hf = eVeVhc 620106.1100.2

100.31063.6199

834

≈×××

×××= −−

λ

3.2.2 With E = eV and ph

=λ and mEpm

pE 22

2

=⇒= we get

pmmmeVh

mEh 3.12

1010106.1101.921063.6

22 31931

34

≈××××××

×===

−−

λ

3.2.3 and ÅC 7.1=λ kVvolte

hcVhcC

3.7106.1107.1

1000.31063.61910

834

≈×××

×××==⇒= −−

λλeV

3.2.4 eV = mv2/2; smsmmeV /1021/

101.9102.1106.122 6

31

319

×≈×

××××== −

v

3.2.5 The deBroglie wavelength

ÅmmeVh

meVm

hmvh 39

100.1106.1101.921063.6

22 31931

34

≈××××××

×====

−−−

λ

4.1.1 och med Einsteins relation eV02,2=Φ Khf +Φ= får vi

JhchfK 199

834

1060,102,210400

1000,31063,6 −−

××−×

×××=Φ−=Φ−=

λ =

4,9725x10-19 – 2,02x1,60x10-19 J = 1,7405x10-19 J J19107,1 −×≈

4.1.2 Kinetiska energin 2

2mvK = ger hastigheten mKv 2

=

4.1.3 K = eV = 1.602x10-19 J Einstein’s relation hf = Φ + K and with c = fλ we have

Khc+Φ=

λ which gives

=××−×

×××=−=Φ −

JKhc 68.010602.110369

1000.31063.6 199

834

λ

5.12195x10-19/1.602x10-19 – 0.68 eV = 2.5 eV

4.21. The Compton wavelength mmcm

hp

C15

827

34

1032.11000.310673.1

1063.6 −−

×=×××

×==λ

4.2.2 E = hf = hc/λ gives pmmEhc 29.8

10602.11015.01000.31063.6

196

834

=××××××

== −

λ

4.2.3 The wavelength difference ( ) pmcm

hcm

he

o

e

43.290cos1 ==−=∆λ

4.2.4 K = E – E´ is the kinetic energy.

′−=

′−=

λλλλ11hchchcK

λ = 8.27 pm gives λ´= λ + ∆λ = 9.27 + 2.43 pm = 10.70 pm

keVeVhcK 341070.10

127.81

10602.11000.31063.611 12

19

834

××××

=

′−= −

λλ

4.3.1 Incoming photon energy hf0= 2 mec2 = 2x511 keV = 1.022 MeV

hf = 2 mec2+ Ke + Kp Kp = 3.0 – 1.022 – 0.25 MeV = 1.73 MeV