ME36500 Homework #10 Due: 11/20/2014 - Purdue...

2
ME36500 Homework #10 Due: 11/20/2014 1/2 Problem #1 (40%) Strain gages and the two active arm bridge configuration shown below are to be used to convert change in resistance due to strain into changes in voltage. Z1 Z2 Z1 =R0 + ΔR+ ΔRT Z2 =R0 Vsupply Z3 =R0 ΔR+ ΔRT Z4 =R0 Z4 Z3 Vout R0 is the rest resistance of the strain gage and the resistance of the resistors, ΔR is the change in resistance due to strain, and ΔRT is the change in resistance due to changes in temperature. (A) Derive an expression for the output of the bridge (Vout) in terms of the input (change in resistance). (B) Swap the impedances for Z3 and Z4, making Z4 the second active arm. Derive the new expression for the output of the bridge in terms of input. (C) State which configuration is preferable and why. (D) If R0 is 120 Ω, and Imax is 30 mA, what is the maximum allowable supply voltage? (E) What is the output voltage if the strain seen by the gages used in the second configuration is 500 μin/in, the gage factor is 2.07, and Vsupply is 5 V? Problem #2 (30%) The ability to measure a stem cell’s mass is important since it reveals information about how close it is to mitosis (cell division). A device that detects the cell as early in its cell cycle (when it is small) as possible would be of great impact. As a mechanical engineer, you wonder whether you can design a cellmass sensor with a micromachined cantilever beam (equipped with a strain gage) to detect the mass of a cell sitting at its tip: You know that the strain ε on a cantilever beam’s top surface is related to a vertical force F applied at its tip by the following equation: ε = t 2 F (L x ) EI where L is the length of the cantilever beam, E is the Young’s modulus, I is the moment of inertia and t is the thickness of the cantilever. x is the distance from the base of the cantilever. You also remember that the moment of inertia of a cantilever beam with uniform rectangular crosssectional area is I = wt 3 12 with w denoting the width of the crosssectional area. cell

Transcript of ME36500 Homework #10 Due: 11/20/2014 - Purdue...

ME36500 Homework #10 Due: 11/20/2014

1/2

Problem  #1  (40%)  Strain  gages  and  the  two  active  arm  bridge  configuration  shown  below  are  to  be  used  to  convert  change  in  resistance  due  to  strain  into  changes  in  voltage.                      Z1     Z2       Z1  =  R0  +  ΔR  +  ΔRT                   Z2  =  R0              Vsupply             Z3  =  R0  –  ΔR  +  ΔRT                   Z4  =  R0              Z4            Z3              Vout          

R0  is  the  rest  resistance  of  the  strain  gage  and  the  resistance  of  the  resistors,  ΔR  is  the  change  in  resistance  due  to  strain,  and  ΔRT  is  the  change  in  resistance  due  to  changes  in  temperature.  (A) Derive  an  expression  for  the  output  of  the  bridge  (Vout)  in  terms  of  the  input  (change  in  

resistance).      

(B) Swap  the  impedances  for  Z3  and  Z4,  making  Z4  the  second  active  arm.    Derive  the  new  expression  for  the  output  of  the  bridge  in  terms  of  input.  

(C) State  which  configuration  is  preferable  and  why.  

(D) If  R0  is  120  Ω,  and  Imax  is  30  mA,  what  is  the  maximum  allowable  supply  voltage?  (E) What  is  the  output  voltage  if  the  strain  seen  by  the  gages  used  in  the  second  

configuration  is  500  µin/in,  the  gage  factor  is  2.07,  and  Vsupply  is  5  V?  

Problem  #2  (30%)  The  ability  to  measure  a  stem  cell’s  mass  is  important  since  it  reveals  information  about  how  close  it  is  to  mitosis  (cell  division).  A  device  that  detects  the  cell  as  early  in  its  cell  cycle  (when  it  is  small)  as  possible  would  be  of  great  impact.  As  a  mechanical  engineer,  you  wonder  whether  you  can  design  a  cell-­‐mass  sensor  with  a  micromachined  cantilever  beam  (equipped  with  a  strain  gage)  to  detect  the  mass  of  a  cell  sitting  at  its  tip:  

 You  know  that  the  strain  ε  on  a  cantilever  beam’s  top  surface  is  related  to  a  vertical  force  F  applied  at  its  tip  by  the  following  equation:  

!!ε =

t2F(L− x)EI

 

where  L  is  the  length  of  the  cantilever  beam,  E  is  the  Young’s  modulus,  I  is  the  moment  of  inertia  and  t  is  the  thickness  of  the  cantilever.  x  is  the  distance  from  the  base  of  the  cantilever.  You  also  remember  that  the  moment  of  inertia  of  a  cantilever  beam  with  uniform  rectangular  cross-­‐sectional  area  is  !!I =wt

3 12  with  w  denoting  the  width  of  the  cross-­‐sectional  area.  

cell

ME36500 Homework #10 Due: 11/20/2014

2/2

(A) Decide  where  on  the  top  surface  a  strain  gage  should  be  located.  Close  to  the  base?  Close  to  the  tip?  Explain.  

(B) Based  on  your  decision,  express  the  strain  that  your  gage  would  experience  in  terms  of  the  cell  mass  and  the  properties  of  the  cantilever.  

(C) Assuming  that  you  use  a  bridge  circuit  (where  the  only  active  resistor  is  your  strain  gage)  in  conjunction  with  a  digital  measurement  device  whose  quantization  level  is  Q,  determine  the  smallest  mass  that  you  can  detect  in  terms  of  the  quantization  interval,  the  bridge’s  supply  voltage  and  other  relevant  properties  of  the  strain  gage  and  the  cantilever.  

(D) Suggest  modifications  to  the  detection  system  in  order  to  improve  your  resolution,  i.e.,  minimum  detectable  cell  mass  

Problem  #3  (30%)  

 The  variable  inductance  displacement  sensor  above  is  used  to  measure  the  depth  of  cut  in  a  lathe.  The  source  supply  voltage  is  at  10kHz  and  20  V  peak  to  peak.  (hint:  amplitude  of  the  sine  wave  is  10V).  The  inductance  of  the  device  can  be  calculated  from  the  following:  

!!L=

L01+α d± x( )

 

The  parameters  for  the  device  are  d  =  10  mm  and  α  =  1600  (m-­‐1).  (A) What  is  the  output  voltage  VO  when  the  displacement  is  x(t)  =  4+2sin(100πt)  m  (your  

answer  should  be  the  expression  for  the  output  voltage)?  (B) What  is  the  error  introduced  into  the  output  voltage  when  the  device  parameters  have  

uncertainties  Δα =  20  (m-­‐1)  and  Δd  =  5  mm  due  to  variations  in  the  manufacturing  process?  Is  it  significant?  Why  or  why  not?  (you  may  assume  the  uncertainties  to  be  standard  deviations)