Me307 machine elements formula sheet
-
Upload
erdi-karacal -
Category
Engineering
-
view
985 -
download
34
Embed Size (px)
description
Transcript of Me307 machine elements formula sheet

1. Stress Analysis
Moment of Inertias
1. Atalet moment of inertia; 2. Polar moment of inertia;
2
xI y dA 2
yI x dA 2 2
( )zJ x y dA
Shape Ix Iy J
Rectangle bh3/12 hb3/12 2 2
12
bhb h
Triangle bh3/36 hb3/36 2 2
18
h bbh
Circle πd4/64 πd4/64 πd4/32
Stresses
Normal Stresses Shear Stresses
Axial
Tensile F
A
Torsional
Tr
J
3
16 /T d for solid circular beam Compression F
A
Bending
b
Mc
I
3
32b
M
d
for solid circular beam
Transverse
(Flexural)
VQ
Ib , Q A y
max 4 / 3V A for solid circular beam
max 2 /V A for hollow circular section
max 3 / 2V A for rectangular beam
Principle stresses
2
2
1,22 2
x y x y
xy
2
tan 2xy
x y
Max. and min shear stresses
2
2
1,22
x y
xy
Von-Mises stresses 2 2
1 1 2 2' or 2 2
' 3x xy (for biaxial)
Stress States
Triaxial stress state
2 311
E E
1 322
E E
3 1 22
E E
Stress in Cylinders
Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders):
2 2 2 2 2
2 2
( ) /i o o it
p a p b a b p p r
b a
2 2 2 2 2
2 2
( ) /i o o ir
p a p b a b p p r
b a
2
2 2
il
p a
b a

If the external pressure is zero (po=0);
2 2
2 2 21i
t
a p b
b a r
2 2
2 2 21i
r
a p b
b a r
r=a r ip
2 2
2 2t i
b ap
b a
r=b 0r
2
2 2
2t i
ap
b a
If the internal pressure is zero (pi=0);
2 2
2 2 21t o
b ap
b a r
2 2
2 2 21r o
b ap
b a r
r=a 0r
2
2 2
2t o
bp
b a
r=b r op
2 2
2 2t o
b ap
b a
a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure
Thin-Walled Wessels(t/r<1/20):
2
it
pd
t
4
il
pd
t
Curved Members In Flexure:
A
rdA
( )
My
Ae r y
o
o
o
Mc
Aer , i
i
i
Mc
Aer
Press and Shrink Fit:
2 2
2 2it
b ap
b a
2 2
2 2ot
c bp
c b
2 2
2 2o o
o
bp c b
E c b
2 2
2 2i i
i
bp b a
E b a
2 2 2 2
2 2 2 2o i o i
io
bp c b bp b a
E c b E b a
2 2 2 2
2 2 2; interface pressure
2o i
c b b aE if E E E = p =
b b c a

2. Deflection Analysis
Fk
y , k=spring constant
T GJk
l ,k=Torsional spring rate for tension or compression loading
AEk
l
Castigliano’s Theorem:
Strain Energy
Axial Load
2
2
F LU
AE Direct Shear Force
2
2
F LU
AG
Torsional Load
2
2
T LU
GJ Bending Moment
2
2
MU dx
EI
Flexural Shear
2
2
CFU dx
GA , C is constant
Buckling Consideration:
Slenderness ratio=l
k
, I
kA
1/2
1
l 2 EC
k Sy
2
2
1
Critical Unit Load = Euler Column/
crPl l C E
k k A l k
; 2
2Pcr
C EI
l
2 2
1
1Critital Unit Load Johnson's Column
2
ycry=
SPl l l= S
k k A CE k
1. Both ends are rounded-simply supported C=1
2. Both ends are fixed C=4
3. One end fixed, one end rounded and guided C=2
4. One end fixed, one end free C=1/4
U Total energy
F Force on the deflection point
Angular deflection
Uy
F
Tl
GJ

3.Design For Static Strength
Ductile Materials
1. Max. Normal Stress Theory (MNST):
If, 1 2 3
1
ySn
3. Distortion Energy Theory
If, 1 2 3
2 2 2
1 2 2 3 3 1( ) ( ) ( )'
2
For baxial stress state;
2 2' 3x xy
1
ySn
2. Max. Shear Stress Theory (MSST):
Yield strength in shear (Ssy)=Sy/2
1 3
max2
, for biaxial stress state;
max
1 2 24
2x xy
max
sySn
Brittle Materials
1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT)
If, 1 2 3 1
utSn
or
3
ucSn
If, 1 2 3
31
3
1
uc
uc ut
ut
SS
S S
S
3
3
Sn
2. The Column Mohr Theory (CMT) or Internal
Friction Theory (IFT):
31
3
1
uc
uc
ut
SS
S
S
3
3
Sn

5. Design for Fatigue Strength
Endurance limit for test specimen (Se’);
For ductile materials:
Se’=0.5 Sut if Sut<1400 MPa
Se’=700 MPa if Sut 1400 MPa
For irons:
Se’=0.4 Sut if Sut<400 MPa
Se’=160 MPa if Sut 400 MPa
For Aliminiums:
Se’=0.4 Sut if Sut<330 MPa
Se’=130 MPa if Sut 330 MPa
For copper alloys:
Se’ 0.4 Sut if Sut<280 MPa
Se’ 100 MPa if Sut 280 MPa
Se = ka kb kc kd ke Se’
Sf=10c N
b
u
e
0.8S1b log
3 S
2
u
e
0.8Sc log
S
ka= surface factor, ka=aSutb
Surface Finish Factor a Factor b
Ground 1.58 -0.065
Machined or Cold Drawn 4.51 -0.265
Hot Rolled 57.7 -0.718
As Forged 272 -0.995
kb= size factor;
kb=1 if d 8 mm and kb= 1.189d-0.097
if 8 mm<d 250 mm for bending & torsional loading.
For non-rotating element, 0.097
b eqk 1.189d deq=0.37d
For pure axial loading, kb=1 and Se’=0.45Sut
For combined loading, =1.11 if Sut 1520 MPa and =1 if Sut 1520 MPa for ductile materials.
kc=reliability factor
kd=temperature effects, kd=1 if T 3500 and kd=0.5 if 350
0<T 500
0
ke=stress concentration factor, ke=1/Kf Kf=1+q(Kt-1)
Kt=geometric stress concentration factor, q=notch sensitivity.
Modified Goodman Soderberg
Infinite Life Finite Life Infinite Life Finite Life
a m
e u
1n =
σ σ+
S S
a m
f u
1n =
σ σ+
S S
a m
e y
1n =
σ σ+
S S
a m
f y
1n =
σ σ+
S S
Fa=(Fmax-Fmin)/2 Fm=(Fmax+Fmin)/2

6. Tolerances and Fits
TF=Cmax-Cmin dL=DU-c Cmax=DU-dL Cmin=DL-dU
TF=Imax+Cmax dU=dL+TS Imax=dU-DL Imin=dL-Du
TF=Imax-Imin dU=DL+Imax
TS=dU-dL TH=DU-DL TF=TH+TS
7. Design of Power Screws
m mR
m
Fd L dT
2 d L
m m
L
m
Fd d LT
2 d L
Or considering tan ;
mR
FdT tan
2 m
R
FdT tan
2
If the friction between the stationary member and the collar of the screw is taken into consideration;
c cmR
d FFdT tan
2 2
c cm
R
d FFdT tan
2 2
o
R R
T FL
T 2 T
when collar friction is negligible, we obtain as,
tan
tan
If tan or m
L
dthen screw is self locking.
Bearing Stresses
b 2 2
r
4pF
h d d
b
m
Fp
d th
pt
2
Shear Stresses
For Screw Thread For Nut Thread
s
r
2F
d h
n
2F
dh
Bending Stresses
The maximum bending stress, m
6F
d Np
N=h/p

Tensile or Compressive stresses
x
t
F
A
2
tt
dA
4
r m
t
d dd
2
Combined Stresses
Rxy 3
t
16T
d
Based on distortion energy theory;
Rxy 3
t
16T
d
2 2
x xy' 3 yS
n'
Based on maximum shear stres theory;
2 2
max x xy
14
2
sy
max
Sn
8. Design of Bolted Joints
Fe=Feb+Fep Feb=CFe Fep=(1-C)Fe b
b m
kC =
k k
Fb=Fi+CFe Fm=Fi-(1-C)Fe
b bb
A Ek
L
m 1 2 n
1 1 1 1..........
k k k k
ib
b
F
k i
m
m
F
k
Shigley and Mishke approach;
For cone angle of 030 ,
ii
i
i
1.813E dk
1.15L 0.5dln 5
1.15L 2.5d
m 1 2 n
1 1 1 1..........
k k k k
If L1=L2=L/2 and materials are same, m
1.813Edk
2.885L 2.5d2ln
0.577L 2.5d

For cone angle of 045 ,
ii
i
i
E dk
5 2L 0.5dln
2L 2.5d
If L1=L2=L/2 and materials are same, m
Edk
L 0.5d2ln 5
L 2.5d
Wileman approach;
i(B d/ L)
m ik EdA e
Where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for
Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616.
Filiz approach;
1
dB
5 L
m eq
2
1k E d e
2 1 B
1 2eq
1 2
E EE
E E
2
1
0.1dB
L
8
11
2
LB 1
L
Static loading;
b y tF S A or b p tF S A p yS 0.85S mF 0
e i p t e1 C nF F S A CnF n=load factor of safety
Critical load= ice
FF
1 C
Dynamic Loading:
ea
t
CnF
2A i
m a
t
F
A s
a m
e u
1n
S S
t u e ui
s e
A S CnF SF 1
n 2 S
Fi=the maximum value of preload for there is no fatigue failure.
Limitations:
p i p0.6F F 0.9F where p t pF A S
e utimax t ut
e
cF n SF A S 1
2N S
e ei t p
F cF(1 c) F A S
N N b3.5d c 10d b
180c
N

9. Design of Riveted Joints
Shearing of Rivets:
F
A , F=Force on each rivet
2d
A4
Secondary Shear Force
ii N
2
i
1
MrF ''
r
Bearing (compression) Failure:
F
A , A=td, t=thickness of the plate
Plate Tension Failure:
F
A , A w Nd t
w=width of plate
N=number of rivets on the
selected cross section
Primary Shear Force
N
i
1
FF'
A
10. Design of Welded Joints
Primary Shear Stress
F
'A
uJ 0.707hJ
Secondary Shear Stress
Mr
''J
uI 0.707hI
Bending Stress
Mc
I

Table 9-3 Minimum weld-metal properties
AWS electrode
Number
n
Tensile Strength
MPa
Yield Strength
MPa
Percent
Elongation
E60xx 420 340 17-25 E70xx 480 390 22
E80xx 530 460 19
E90xx 620 530 14-17
E100xx 690 600 13-16
E120xx 830 740 14
Table 9-5 Fatigue-strength reduction factors
Type of Weld Kf
Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5
End of parallel fillet weld 2.7
T-butt joint with sharp corners 2.0

Table 9-1 Torsional Properties of Fillet Welds*
Weld Throat Area Location of G Unit Polar Moment of
Inertia
*G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all
welds are of the same size.

Table 9-2 Bending Properties of Fillet Welds*
Weld Throat Area Location of G Unit Moment of Inertia
*Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld
group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the
same size

Table A3-8 Stress concentration factors for round shaft with
shoulder fillet in tension
d
r
D
.
o= F/A, where A= d2/4
D/d =1,02 D/d =1,05 D/d =1,1 D/d=1,5
r/d Kt Kt Kt Kt
0,025 1,800 - - -
0,028 1,728 - 2,200 -
0,031 1,678 2,000 2,125 -
0,037 1,610 1,868 2,020 -
0,044 1,550 1,778 1,938 2,522
0,050 1,508 1,714 1,866 2,400
0,062 1,452 1,626 1,766 2,235
0,075 1,408 1,550 1,684 2,086
0,088 1,370 1,502 1,624 1,970
0,100 1,336 1,457 1,568 1,893
0,125 1,286 1,400 1,496 1,760
0,150 1,254 1,364 1,452 1,662
0,175 1,230 1,340 1,400 1,600
0,200 1,220 1,314 1,372 1,546
0,250 1,216 1,292 1,342 1,508
0,275 1,200 1,270 1,325 1,480
0,300 1,200 1,250 1,296 1,452
* Adopted from Ref. [12]

Table A3-9 Stress concentration factors for round shaft with shoulder fillet
in torsion
d
r
DT T
.
o= Tc/J, where c=d/2 and J=d4/32
D/d =1,09 D/d =1,20 D/d =1,33 D/d =2,0
r/d Kt Kt Kt Kt
0,009 - - - -
0,012 1,800 2,300 - 2,600
0,030 1,566 2,040 2,144 2,288
0,025 1,472 1,894 2,020 2,122
0,033 1,384 1,761 1,878 1,966
0,042 1,322 1,644 1,755 1,828
0,050 1,283 1,576 1,677 1,750
0,062 1,244 1,500 1,600 1,644
0,075 1,206 1,434 1,516 1,572
0,087 1,184 1,378 1,458 1,510
0,100 1,166 1,342 1,412 1,466
0,125 1,144 1,275 1,344 1,400
0,150 1,122 1,220 1,294 1,344
0,200 1,110 1,160 1,220 1,266
0,250 1,100 1,130 1,178 1,222
0,300 1,100 1,120 1,160 1,200
* Adopted from Ref. [12]

Table A3-10 Stress Concentration factors for round shaft with shoulder
fillet in bending
d
r
DM M
.
o= Mc/I, where c=d/2 and I=d4/64
D/d =1,02 D/d =1,05 D/d =1,1 D/d =1,5 D/d =3
r/d Kt Kt Kt Kt Kt
0,012 2,290 2,553 2,700 - -
0,017 2,120 2,378 2,500 3,000 -
0,021 2,000 2,240 2,366 2,774 3,000
0,025 1,926 2,134 2,260 2,600 2,862
0,036 1,760 1,936 2,046 2,310 2,600
0,050 1,644 1,782 1,865 2,060 2,310
0,062 1,574 1,700 1,750 1,925 2,140
0,075 1,518 1,628 1,688 1,800 1,986
0,087 1,472 1,563 1,630 1,728 1,880
0,100 1,440 1,534 1,580 1,660 1,804
0,125 1,380 1,468 1,500 1,584 1,684
0,150 1,330 1,412 1,450 1,510 1,584
0,175 1,297 1,358 1,400 1,450 1,510
0,200 1,264 1,336 1,360 1,400 1,457
0,225 1,242 1,308 - - 1,410
0,250 1,225 1,286 - - 1,374
0,275 1,210 1,264 - - 1,340
0,300 1,200 1,242 - - 1,320
* Adopted from Ref. [12]