ME150_Lect14-1_Natural Convection

12
Prof. Nico Hotz ME 150 – Heat and Mass Transfer 1 Natural Convection - No (externally) forced flow - Flow is driven by density differences in the gravity field Example: Space between two horizontal plates 0 0 > < dy d dy dT ρ e.g. Floor heating e.g. Ceiling heating 0 0 < > dy d dy dT ρ Chap. 15: Natural Convection y T 1 T 2 > T 1 der Flüssigkeit T 1 T 2 ρ 2 ρ 1 y Τ,ρ Instable flow y T 1 T 2 < T 1 T 1 T 2 ρ 2 ρ 1 y Τ,ρ Stable fluid, no flow

description

dT dT ρ 1 y Chap. 15: Natural Convection Stable fluid, no flow T 2 ρ 2 instabile Bewegung der Flüssigkeit Instable flow T 2 ρ 2 Prof. Nico Hotz ρ ρ stabile Flüssigkeit (keine Bewegung) 1 T 1 T 1 T 1 T 1 T 2 > T 1 T 2 < T 1 y y Τ,ρ Τ,ρ gas with buoyancy T ∞ , ρ ∞ T>T ∞ ρ< ρ ∞ T ∞ , ρ ∞ T>T ∞ ρ< ρ ∞ Outlet of a hot exhaust Chap. 15: Natural Convection Prof. Nico Hotz 2 T ∞ , ρ ∞ T ∞ , ρ ∞ T >T ∞ ρ < ρ ∞ T >T ∞ ρ < ρ ∞

Transcript of ME150_Lect14-1_Natural Convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

1

Natural Convection - No (externally) forced flow - Flow is driven by density differences in the gravity field

Example: Space between two horizontal plates

00 >→<dyd

dydT ρ

e.g. Floor heating

e.g. Ceiling heating

00 <→>dyd

dydT ρ

Chap. 15: Natural Convection

y

T1

T2 > T1

instabileBewegung

der Flüssigkeit

T1

T2ρ2

ρ1

y

Τ,ρ

Instable flow

y

T1

T2 < T1

stabile Flüssigkeit(keine Bewegung)

T1

T2 ρ2

ρ1

y

Τ,ρ

Stable fluid, no flow

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

2

T ∞ , ρ ∞

T >T ∞ ρ < ρ ∞

Natural convection from a heated wire

Outlet of a hot exhaust gas with buoyancy

T ∞ , ρ ∞ T>T ∞ ρ< ρ ∞

T ∞ , ρ ∞

T >T ∞ ρ < ρ ∞

Natürliche Konvektion von einem geheizten Draht

Outlet of a hot exhaust gas with buoyancy

T ∞ , ρ ∞ T>T ∞ ρ< ρ ∞

Example: thermal buoyancy flow from a hot wire (development of a plume)

Mix of forced and natural convection: hot jet of exhaust gas

Chap. 15: Natural Convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

3

Natural Convection on a Vertical Plate

Velocity bounary layer: v(0) and v(∞) = 0

vmax is within the boundary layer

Main flow direction: in y-direction

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

4

0=+yv

xu

∂∂

∂∂

2

2

xvg

dydP

yvv

xvu

∂µρ

∂∂

∂∂

ρ ⋅+⋅−−=⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅

2

2

xT

yTv

xTu

∂∂

α∂∂

∂∂

⋅=⋅+⋅

Boundary Layer Equations (with y-momentum)

C

M

E Gravity is relevant

)()(),( yPyPyxP ∞≈≈

As for forced convection: no pressure gradient within the boundary layer:

gdydP

⋅−= ∞∞ ρ

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

5

2

2)(

xvg

yvv

xvu

∂µρρ

∂∂

∂∂

ρ ⋅+⋅−=⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅ ∞

Pressure term used in momentum equation:

Boussinesq Approximation: density differences can be neglected, except where they appear in terms multiplied by g

constant

..........)( +−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+= ∞

∞∞ TT

T∂ρ∂

ρρ

pT ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅−=∂ρ∂

ρβ

1

)()()( ∞∞∞∞∞∞ −⋅⋅=−→−⋅⋅−= TTTT βρρρβρρρ

Series expansion for density:

Thermal expansion coefficient:

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

6

ρµ

∂∂

β∂∂

∂∂

=⋅+−⋅⋅=⋅+⋅ ∞ νν

FrictionBuoyancy

Inertia

xvTTg

yvv

xvu 2

2

)(

Momentum equation: Density difference in terms of temperature difference

0=+yv

xu

∂∂

∂∂

2

2

)(xvTTg

yvv

xvu

∂∂

β∂∂

∂∂

⋅+−⋅⋅=⋅+⋅ ∞ ν

2

2

xT

yTv

xTu

∂∂

α∂∂

∂∂

⋅=⋅+⋅

Entire equation system:

∞=

=∞→

=

===

TTvx

TTvux

W

0:

0:0

Boundary conditions: M

C

E

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

7

vvuu

TTT

Hyx

W

t

≈≈

−≈

≈≈

δ

Orders of magnitude for temperature boundary layer:

Hvu

t≈

δ

2)(tT

wt

vTTgHvvvu

δβ

δ⋅+−⋅⋅≈⋅+⋅ ∞ ν

Δ

2t

ww

t

w TTHTTvTTu

δα

δ∞∞∞ −

⋅≈−

⋅+−

Orders of magnitude

Used in governing equations:

C

M

E

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

8

Friction

tBuoyancyInertia

vTgHv

2

2

δβ ⋅+Δ⋅⋅≈ ν

This leads to:

Hvu tδ⋅=

2 Limits: - Inertia negligible → gases with high viscosity - Friction negligible (Buoyancy is always relevant)

Limit 1: Buoyancy = Friction (no inertia)

Unknown: u, v, δt to be determined from governing equations

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

9

∞−=Δ⋅

⋅Δ⋅⋅= TTTHTgRa wH α

βν

3

HRa

HTgu H

ααβ⋅=⎟⎟

⎞⎜⎜⎝

⋅Δ⋅⋅= 4

141

3

ν

HRaHTgv H

ααβ⋅=⎟

⎞⎜⎝

⎛ ⋅⋅Δ⋅⋅= 2

121

ν

HRaTgH

Ht ⋅=⎟⎟⎠

⎞⎜⎜⎝

Δ⋅⋅

⋅⋅=

− 414

1

βα

δν

Introduction of dimensionless Rayleigh-Number Ra, characte-ristic for natural convection (forced convection: Re, Pr)

Solution (without derivation):

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

10

t

TkThqδΔ⋅≈Δ⋅=ʹ′ʹ′

HRakkh H

t

41

⋅≈≈

δ

41

RakHhNu ≈⋅

=

Convective heat transfer coefficient through Fourier‘s Law:

Nusselt number for natural convection on a vertical plate (friction dominant):

Order of magnitude analysis: shows functional relations, but not exact values !

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

11

Limit 2: Buoyancy = Inertia (no friction)

( ) 41Pr⋅⋅≈ HRaH

u α

( ) 21Pr⋅⋅≈ HRaH

v α

( ) 41

Pr −⋅⋅≈ Ht RaHδ

( ) 41Pr⋅≈⋅

≈ HRakHhNu

Solution (without derivation):

( )H

Rakkh H

t

41

Pr⋅⋅≈≈

δ

Nusselt number for natural convection on a vertical plate (inertia dominant)

Chap. 15.1: Natural Convection – Vertical Plate

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

12