NATURAL CONVECTIONocw.snu.ac.kr/sites/default/files/NOTE/2251.pdf · 2018. 1. 30. · NATURAL...

40
NATURAL CONVECTION Laminar Free Convection on a Vertical Surface Empirical Correlations: External Free Convection Flows Free Convection within Parallel Plate Channels Empirical Correlations: Enclosures

Transcript of NATURAL CONVECTIONocw.snu.ac.kr/sites/default/files/NOTE/2251.pdf · 2018. 1. 30. · NATURAL...

  • NATURAL CONVECTION

    • Laminar Free Convection on a Vertical Surface

    • Empirical Correlations: External Free Convection Flows

    • Free Convection within Parallel Plate Channels

    • Empirical Correlations: Enclosures

  • Free-convection boundary layers

    Laminar Free Convection on a Vertical PlateBoussinesq approximationBasic idea : In many problems, δρ/ρ∞

  • Ex) water at 15°C and 1 atmthermal expansion coefficient : 4 1

    1 1.5 10 KTρβ

    ρ− −

    ∞ ∞

    ∂= − = ×

    isothermal compressibility : 51 5 10pρκ

    ρ−

    ∞ ∞

    ∂= = ×

    ∂bar-1

    When bar,10 K, 1T T p p∞ ∞− = − =

    whilst the contribution of p – p∞ to δρ/ρ∞ is only 5×10-5.

    ( ) ( )1 1T T p pT p

    ρ ρ ρ ρρ ρ ρ

    ∞∞ ∞

    ∞ ∞ ∞∞ ∞

    − ∂ ∂= − + − +

    ∂ ∂

    ( ) ( )( , )T p T T p pT pρ ρρ ρ∞ ∞ ∞

    ∞ ∞

    ∂ ∂= + − + − +

    ∂ ∂

    the contribution of T – T∞ to δρ/ρ∞ is 1.5×10-3,

  • When the dynamic pressure is negligible,

    ( ) ( )1 1T T p pT p

    ρ ρ ρ ρρ ρ ρ

    ∞∞ ∞

    ∞ ∞ ∞∞ ∞

    − ∂ ∂= − + − +

    ∂ ∂

    ( )T Tβ ∞≈ − −

    Thus, ( )1 T Tρ ρ β∞ ∞⎡ ⎤= − −⎣ ⎦dp gx pρ∞= − +

    dp gdx

    ρ∞= −

  • 2

    2

    u u dp uu v gx y dx y

    ρ ρ μ ρ∂ ∂ ∂+ = − + −∂ ∂ ∂

    ( )2

    2 1u u uu v g T T gx y y

    ρ ρ ρ μ ρ β∞ ∞ ∞∂ ∂ ∂

    ⎡ ⎤+ = + − − −⎣ ⎦∂ ∂ ∂

    ( ) ( )1 1u uT T u T T vx y

    ρ β ρ β∞ ∞ ∞ ∞∂ ∂

    ⎡ ⎤ ⎡ ⎤− − + − −⎣ ⎦ ⎣ ⎦∂ ∂

    ( )2

    2

    u g T Ty

    μ ρ β∞ ∞∂

    = + −∂

    ( )2

    2

    u u uu v g T Tx y y

    ν β ∞∂ ∂ ∂

    + = + −∂ ∂ ∂

    When ( ) 1,T Tβ ∞−

  • Similarity Solution to 2-D Boundary Layer Equations with Boussinesq Approximation

    boundary conditions

    0u vx y∂ ∂

    + =∂ ∂

    ( )2

    2

    u u uu v g T T vx y y

    β ∞∂ ∂ ∂

    + = − +∂ ∂ ∂

    2

    2

    T T Tu vx y y

    α∂ ∂ ∂+ =∂ ∂ ∂

    at y = 0, 0, su v T T= =at x = 00,u T T∞= =as y→∞0,u T T∞→ →

  • , ,s

    T Tu vy x T Tψ ψ θ ∞

    ∂ ∂ −= = − =∂ ∂ −

    Scaling : ( )2

    2

    u u uu v g T T vx y y

    β ∞∂ ∂ ∂

    + = − +∂ ∂ ∂

    ( )2

    2~ ~u uu g T T vx y

    β ∞∂ ∂

    −∂ ∂

    ( )0 00 2~ ~u uu g T T vx

    βδ∞

    → −

    ( )2 0

    0 2~ , ~s

    vu vxug T T

    δβ δ∞−

    ( )2

    2~s

    v vxg T T

    δβ δ∞

    →−

  • similarity variable :

    Grashof number :

    ( )2

    4 ~s

    v xg T T

    δβ ∞−

    or( )

    1/ 42

    s

    v xg T T

    δβ ∞

    ⎛ ⎞= ⎜ ⎟

    −⎝ ⎠

    ( ) 1/ 42~sg T Ty y

    v xβ

    ηδ

    ∞⎛ ⎞−= ⎜ ⎟⎝ ⎠

    ( ) 1/ 43 1/ 42 Gr

    sx

    g T T xy yx v x

    β ∞⎛ ⎞−= ≡⎜ ⎟⎝ ⎠

    ( ) 32Gr

    sx

    g T T xv

    β ∞−=

    Let ( )1/ 41/ 4

    2

    Gr4 4

    sx g T Ty yx v x

    βη ∞

    ⎛ ⎞−⎛ ⎞= = ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

  • 0~u uyψ ψ δ∂= →∂ 0 2

    ~ vxuδ

    ⎛ ⎞⎜ ⎟⎝ ⎠

    ( ) 1/ 42 2~ ~ ~

    sg T Tvx vx vxv x

    βδ

    δ δ∞⎛ ⎞−

    ⎜ ⎟⎝ ⎠

    ( ) 1/ 43 1/ 42 Gr

    sx

    g T T xv v

    vβ ∞⎛ ⎞−= =⎜ ⎟

    ⎝ ⎠

    Let( )1/ 4

    ( )4 Gr / 4x

    fv

    ψ η≡

    or1/ 4Gr4 ( )

    4xv fψ η⎛ ⎞= ⎜ ⎟

    ⎝ ⎠

  • similarity equations:

    boundary conditions:

    1/ 4Gr44

    x dfu vy d yψ η

    η∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠

    1/ 4 1/ 41/ 2Gr1 24 Gr

    4 4x x

    xGr vv f f

    x x⎛ ⎞ ⎛ ⎞ ′ ′= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    similarly for other terms2 2

    2 2, , , , , , , u u uvx y y x y y

    θ θ θθ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

    23 2 0, 3Pr 0f ff f fθ θ θ′′′ ′′ ′ ′′ ′+ − + = + =

    (0) 0, (0) 0, ( ) 0, (0) 1, ( ) 0f f f θ θ′ ′= = ∞ = = ∞ =

  • Nusselt number1/ 4Gr,

    4x

    s

    T T yT T x

    θ η∞∞

    − ⎛ ⎞= = ⎜ ⎟− ⎝ ⎠

    ( )2

    0 0s

    sy

    T v x dq k ky g T T d yη

    θ ηβ η∞= =

    ∂ ∂′′ = − = −∂ − ∂

    ( )

    1/ 42 1 1(0) Gr4 xs

    v xkg T T x

    θβ ∞

    ⎛ ⎞′= − ⎜ ⎟− ⎝ ⎠

    ( )sh T T∞= −1/ 4 1/ 4Gr Gr(0) (Pr)

    4 4x xk kh g

    x xθ⎛ ⎞ ⎛ ⎞′= − = −⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠

  • 1/ 4(0)Nu Gr2x x

    hxk

    θ ′= = −

    1/ 4 1/ 4Gr Gr(0) (Pr)4 4

    x xk kh gx x

    θ⎛ ⎞ ⎛ ⎞′= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    1/ 4GrNu (Pr)2x

    x g=

    ( )1/ 2

    1/ 41/ 2

    0.75Pr(Pr)0.609 1.221Pr 1.238Pr

    g =+ +

  • Average Nusselt number1/ 4

    0 0

    Gr1 1 (Pr)4

    L Lxkh hdx g dx

    L L x⎛ ⎞= = ⎜ ⎟⎝ ⎠∫ ∫

    ( ) 1/ 42 1/ 40

    (Pr)4

    Lsg T Tk dxgL v x

    β ∞⎛ ⎞−= ⎜ ⎟⎝ ⎠

    ∫( ) 1/ 43

    2

    4 (Pr)3 4

    sg T T Lk gL v

    β ∞⎛ ⎞−= ⎜ ⎟⎝ ⎠

    1/ 44 Gr(Pr)3 4

    Lk gL

    ⎛ ⎞= ⎜ ⎟⎝ ⎠

    1/ 44 Gr 4Nu (Pr) Nu3 4 3

    LL L

    hL gk

    ⎛ ⎞= = =⎜ ⎟⎝ ⎠

  • limiting cases:

    Rayleigh number :

    ( )( )

    1/ 4 1/ 4

    1/ 4

    0.600 Gr Pr Pr Pr 0Nu

    0.503 Gr Pr Prx

    x

    x

    ⎧ →⎪= ⎨→∞⎪⎩

    asas

    Ra Gr Prx x=

    ( ) ( )32

    3ssg T T x T

    v vv g T xβα

    βα

    ∞ ∞−=−

    =

  • Critical Rayleigh number

    ( ) 3 9, ,Ra Gr Pr 10

    sx c x c

    g T T xβνα

    ∞−= = ≈

  • laminar:

    turbulent:

    isothermal plates

    Nusselt number

    Vertical PlateEmpirical Correlations: External Flows

    Nu RanL LhL Ck

    = =

    10.59, 2

    C n= =

    10.10, 3

    C n= =

  • • Churchill and Chu (1975)

    for all RaL

    ( )

    2

    1/ 6

    8 / 279 /16

    0.387RaNu 0.8251 0.429 / Pr

    LL

    ⎧ ⎫⎪ ⎪= +⎨ ⎬

    ⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

    ( )

    ( )

    1/ 4

    4 / 99 /16

    9

    0.670RaNu 0.68 1 0.429 / Pr

    Ra 10

    LL

    L

    = +⎡ ⎤+⎣ ⎦

  • Inclined and Horizontal PlatesInclined plates

    Use correlations for the vertical plates by replacing g by gcosθ for 0 60θ≤ ≤

  • Horizontal plates

    upper surface of heated plate or lower surface of cooled plate

    (As: plate surface area, P: perimeter)sALP

    1/ 4Nu 0.54Ra L L=

    ( )4 710 Ra 10L< <1/ 3Nu 0.15Ra L L=

    ( )7 1110 Ra 10L<

  • lower surface of heated plate or upper surface of cooled plate

    ( )1/ 4 5 10Nu 0.27Ra 10 Ra 10L L L= <

  • Long Horizontal Cylinder

    • Morgan (1975) C, n Table 9.1

    • Churchil and Chu (1975)

    Nu Ra ,nD DhD Ck

    = =

    ( )

    2

    1/ 612

    8 / 279 /16

    0.387RaNu 0.60 , Ra 101 0.559 / Pr

    DD D

    ⎧ ⎫⎪ ⎪= +

  • Spheres• Churchil (1983)

    ( )

    1/ 4

    4 / 99 /16

    0.589RaNu 21 0.469 / Pr

    DD = +

    ⎡ ⎤+⎣ ⎦

    11Pr 0.7, Ra 10D≥

  • Example 9.3

    air flow

    long duct

    Find: Heat loss from duct per meter of length

    Assumption: Radiative effects are negligible.

    45 CsT = °0.75 mw =

    0.3 mH =

    15 CT∞ = °quiescent air

  • heat loss from two side walls, top wall and bottom wallside wall: vertical platetop wall: upper surface of heated platebottom wall: lower surface of heated plate

    air flow

    long duct

    45 CsT = °0.75 mw =

    0.3 mH =

    15 CT∞ = °quiescent air

    2 s t bq qq q= + ′ + ′′ ′

    ( ) ( ) ( )2 s ss t bsH T T w Th h hT w T T∞ ∞ ∞= − + − + −

  • side wall: vertical plate

    Churchill and Chu (1975)

    for all RaL( )

    2

    1/ 6

    8 / 279/16

    0.387RaNu 0.8251 0.429 / Pr

    LL

    ⎧ ⎫⎪ ⎪= +⎨ ⎬

    ⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

    ( )( )

    1/ 49

    4/ 99 /16

    0.670RaNu 0.68 Ra 101 0.429 / Pr

    LL L= + ≤

    ⎡ ⎤+⎣ ⎦air: 6 2 6 2

    1

    16.2 10 m /s , 22.9 10 m / s0.0265 W/m K , 0.0033 K , Pr 0.71k

    ν α

    β

    − −

    = × = ×

    = ⋅ = =

    ( ) 3 7Ra 7.07 10sLg T T Hβ

    να∞−= = ×

    2Nu 4.23 W/m KLskH

    h = = ⋅

  • top wall: upper surface of heated plate

    1/ 4 4 7Nu 0.54Ra (10 Ra 10 ),L L L= < <

    1/ 3 7 11Nu 0.15Ra (10 Ra 10 )L L L= < <

    (As: plate surface area, P : perimeter)sALP

    ( )0.375m

    2 2 2wL wL wLw L L

    = ≈ = =+

    ( ) ( )3 8/ 2Ra 1.38 10sLg T T wβ

    να∞−= = ×

    ( ) 1/ 3/ 2 0.15RaLth w

    k=

    ( ) 1/ 3 2/ / 2 0.15Ra 5.47 W/m Kt Lkh w⎡ ⎤= × = ⋅⎣ ⎦

  • bottom wall: lower surface of heated plate

    1/ 4 5 10Nu 0.27Ra (10 Ra 10 )L L L= < <

    ( ) ( )3 8/ 2Ra 1.38 10sLg T T wβ

    να∞−= = ×

    ( ) 1/ 4 2/ / 2 0.27Ra 2.07 W/m Kb Lkh w⎡ ⎤= × = ⋅⎣ ⎦

    ( )( )2 2s t b s t b sq q qq h H h w h w T T∞′ ′ ′= + + = ⋅ + ⋅ + ⋅ −′246 W / m=

  • Example 9.4

    total heat loss per unit length of pipe

    Find: Heat loss from the pipe per unit length [W/m]q′

    quiescent air23 CT∞ = °

    0.1m

    0.85ε = 165 CsT = °

    sur 23 CT = °convq′ radq′

    conv radq qq = +′ ′′ ( ) ( )4 4surs sD T T Th D Tπ επ σ∞= − + −

  • long horizontal cylinder

    Churchil and Chu (1975)2

    1/ 612

    8/ 279/16

    0.387RaNu 0.60 Ra 101 (0.559 / Pr)

    DD D

    ⎧ ⎫⎪ ⎪= +

  • Vertical Channels• Elenbaas (1942)

    symmetrically heated isothermal plates

    fully developed limit (S/L→0)

    Free Convection in Parallel Plate Channels

    ( )

    3 / 4

    1 35Nu Ra 1 exp24 Ra /S S S

    SL S L

    ⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= − −⎨ ⎬⎢ ⎥⎜ ⎟⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

    ( )(fd)

    Ra /Nu

    24S

    s

    S L=

    /Nu ,Ss

    q A ST T k∞

    ⎛ ⎞= ⎜ ⎟−⎝ ⎠

    ( ) 3Ra sS

    g T T Sβαν

    ∞−=

    S: channel widthL: channel length

  • Inclined Channels• Azevedo and Sparrow (1985)

    0 45θ≤ ≤

    ( ) 1/ 4Nu 0.645 Ra /S S S L⎡ ⎤= ⎣ ⎦

  • Rectangular CavitiesEmpirical Correlations: Enclosures

    ( )1 2q h T T′′ = −

  • Horizontal cavity heated from below

    longitudinal roll cells

    conduction regime( ) 31 2Ra 1708L

    g T T Lβαν−

    = <

    Nu 1L =

    41708 < Ra 5 10L ≤ ×

    • Globe and Dropkin (1959)1/ 3 0.074Nu 0.069Ra PrL L

    hLk

    = =

    5 93 10 Ra 7 10L× < < ×

  • Vertical rectangular cavityconduction regime

    • Catton (1978)for aspect ratio

    0.29

    3 5

    3

    PrNu 0.18 Ra0.2 Pr

    1 2

    10 Pr 10Ra Pr100.2 Pr

    L L

    L

    HL

    ⎛ ⎞= ⎜ ⎟+⎝ ⎠⎡ ⎤<

  • for large aspect ratio• MacGregor and Emery (1969)

    0.31/ 4 0.012 4

    4 7

    10 40

    Nu 0.42Ra Pr 1 Pr 2 1010 Ra 10

    L L

    L

    HLH

    L

    ⎡ ⎤<

  • Concentric Cylinders

    keff: effective thermal conductivity

    for

    for

    ( ) ( )eff2

    ln / i oo i

    kq T TD Dπ′ = −

    ( )1/ 4

    1/ 4*eff Pr0.386 Ra0.861 Pr c

    kk

    ⎛ ⎞= ⎜ ⎟+⎝ ⎠

    2 * 710 Ra 10c≤ ≤

    [ ]( )

    4

    *53 3 / 5 3 / 5

    ln( / )Ra Rao ic L

    i o

    D D

    L D D− −=

    +

    effk k=

    *Ra 100c

  • Concentric Spheres• Raithby and Hollands (1975)

    for

    ( )eff i o i oD Dq k T T

    Lπ ⎛ ⎞= −⎜ ⎟⎝ ⎠

    2 * 410 Ra 10c≤ ≤

    ( )1/ 4

    1/ 4*eff Pr0.74 Ra0.861 Pr c

    kk

    ⎛ ⎞= ⎜ ⎟+⎝ ⎠

    ( ) ( )*

    4 57 / 5 7 / 5

    RaRa/

    Ls

    o i i o

    LD D D D− −

    =+