Limit Topology for Dimer Algebra Random...

78
Limit Topology for Dimer Algebra Random R-Trees (Based on Joint Discussion with Nicolai Reshetikhin) Matthew Bernard May 2018

Transcript of Limit Topology for Dimer Algebra Random...

  • Limit Topology for Dimer AlgebraRandom R-Trees

    (Based on Joint Discussion with Nicolai Reshetikhin)Matthew Bernard

    May 2018

  • Abstract

    We prove inverse partition correlation of Z projective limit topology by KasteleynPfaffian Pf(ΣK)∈Quot(K[D]) Grassmann field framework of bipartite (Z+)d dimer‘‘tree-like object” equipped with dual lattice height. We obtain the asymptoticscritical points of real and complex discriminants for the Grassmann-integral FermionKernel of special operators, and formulate conjecture for correlation function on largedeviation functional of height function fluctuation φ, in asymptotic behavior of largerandom spanning tree and tree-valued measure.

    Keywords: Random-Dimer, Kasteleyn, Grassmann, Fermionic-Correlation

    Grateful to all the conference organizers/participants

    2

  • 1 Characterizations

    1.1 Basic definitions and observations

    Graph Γ:={i∈N |1≤ i≤n}⊂ (Z+)d |d=2,3,. . . in topological surfaceMg

    1

    2 3

    4

    5

    6

    7

    89

    10

    11

    12

    1314

    1516

    1718

    1920

    is partition [σ] if, ∀ ℓ :={i= i1· · · id, j=j1· · · jd}∈D, ∃ perfect matching:• Dimers (ℓ)ℓ∈D do not overlap, ∀D:= set of all configurations D of Γ• All vertices (i)i∈Γ :=∂D are covered: |∂D|=2

    ∑ℓ σD(ℓ), σD :={0, 1}

    ∀ |[σ]|≤|D| partitions [σ].Remark. Γ:= closed, connected; n := even; dimer is undefined ∀ i=j loop.

    3

  • Symmetric difference D∆D′ :=D∪D′\D∩D′ ⊇ (Cα | α∈N, 1≤α≤m).

    1

    2 3

    4

    5

    6

    7

    89

    10

    11

    12

    1314

    1516

    1718

    1920

    One or more circuit-coverings ⇐= transition cycles := superposition cycles:

    • Disjoint even-length (simple closed curves) cycles Cα | α∈N, 1≤α≤m.• Alternating sequence of configuration-pair by ordered cyclic sequence:

    elementary circuit := (ℓ1, ℓ2, . . . , ℓr) of (ℓ1, ℓ3, . . . , ℓr−3, ℓr−1) ∈D, resp.(ℓ2, ℓ4, . . . , ℓr−2, ℓr) ∈D′, for sequence i1, ℓ1, i2, ℓ2, . . . , ℓr joining vertexi1 after finite edges, starting at i1. Another elementary circuit starting atvertex ir+1 at end of edge ℓr+1∈D for Γ of vertices > r, etc.

    4

  • Proposition. Aut(D) :=subset of automorphism group Aut(D) is given by|Aut(D)|=

    (n2

    )! 2

    n2 , where |Aut(D)|≤|Aut(Γ)|=n! .

    Proof. Preserving contiguity (adjacency+distribution), ∀ [σ]∼σ∈Aut(D) :

    [σ] :Γ→Γ{ σ(1, . . . , n) = (σ(1),σ(2), . . . ,σ(n−1),σ(n))

    s.t. σ(2ℓ−1)=ℓ, ℓ

  • The local observables :=D-D correlation functions (conditional probabilities)⟨ ∏ℓ∈D

    σD(ℓ)⟩

    def== Prob(ℓ1 ∈ D, . . . , ℓn ∈ D) := E

    [ n∏i=1

    σD(ℓi)]

    =∑D∈D

    n∏i=1

    σD(ℓi)× Prob(D) =

    ∑D∈D

    ∏ℓ∈D

    εℓ ωℓn∏

    i=1

    σD(ℓi)∑D∈D

    ∏ℓ∈D

    εℓ ωℓ

    where εℓ∈{−1,+1}, and σD : Γ→ {0, 1} by

    σD(ℓ) :={1 if ℓ ∈ D0 if ℓ ̸∈ D

    ∀D ∈ D

    is the indicator function of ℓ on the support D for all dimer weights ω(·)and,

    the numerator =∑

    D∋ ℓ1, ..., ℓn

    εD ωD∣∣∣ εD∈{−1,+1} ∼ ∏

    ℓ∈D

    εℓ .

    Remark. If any ℓξ ̸= ℓη | ξ,η ∈ {1, . . . , n} have a common vertex, then⟨σD(ℓ1) · · ·σD(ℓn)⟩=0; more so, σD(ℓ)σD(ℓ)=σD(ℓ); so, ℓξ ̸=ℓη, ∀ ξ ̸=η.

    6

  • That is, in the σ-finite energy Ξ(·) measure δ(·) ∈ Ξ :E(Γ)→R, ℓ 7→ Ξℓ,probability exists by⟨∏

    ℓ∈D

    σD(ℓ)⟩:=

    ∏ℓ∈D

    εℓ ωℓ∑D∈D

    ∏ℓ∈D

    εℓ ωℓ=

    εD ωDZ(Γ;ω)

    =:Prob(D)∣∣∣∣ωℓ=e− Ξℓk T , εD∼∏

    ℓ∈D

    εℓ

    =1

    Zexp(−ΞDk T

    ) ∣∣∣ ΞD=∑ℓ∈D

    Ξℓ , Z=∑D∈D

    exp(−ΞDk T

    )where Z := strict-sense positive continuous partition function on the objects:

    1

    2

    4

    5

    6

    9

    10

    11

    13

    14 15

    16

    19

    29

    30

    66

    • Domains in hexagonal lattice.

    5 6

    7 8 9 10

    11

    15 17 19

    • Domains in square lattice.

    7

  • The bipartite graph (of no black-black nor white-white edge) is disjoint unionV (Γ) = V•(Γ) ⊔ V◦(Γ).

    Instance.

    1

    2

    4

    5

    6

    9

    10

    11

    13

    14 15

    16

    19

    29

    30

    66

    5 6

    7 8 9 10

    11

    15 17 19 .

    Non-instance. 1 2 3

    4 5 6

    7 8

    (no bipartite structureon triangular lattices

    ).

    Remark.D := 1-chain in cell complex of GF2 field: (ℓ)ℓ∈D∈H1

    (Mg;GF2

    )∼=(Z2)2g.∂D := 0-chain in cell complex of GF2 field: (i)i∈Γ∈H0

    (Mg;GF2

    )∼=Z2.8

  • 1.2 Combinatorial equivalence

    Proposition. Two families, respectively, on space of dimers and space oftilings, are combinatorially equivalent; that is, ∃ bijective correspondence

    Dimers ←→ T ilings.Proof. Let all (v)v ∈Γ⊂Mg := closed traversal (walk); Γ finite, connected,and planar (non-intersecting edges). The set of all Γ spanning trees defines:I. The 2D cell complex Γ:

    vertices, edges, faces := 0-cells, 1-cells, 2-cells, resp.1

    2 3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Disjoint interiors.

    dim(∂Γn) = (n−1) /GF (2)∂Γn := boundary between

    two n-cells.

    Remark. Γ⊂Mg := embedding by 1-skeleton CW-complex (resp. cellulardecomposition of an oriented closed connected surface).

    9

  • II. The dual cell complex Γ∗:0-cells, 1-cells, 2-cells := ‘‘centers” of 2-cells, 1-cells, 0-cells of Γ, resp.

    1

    2 3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    21

    22

    23

    25

    Γ∗ := dualcell complexto Γ.

    III. Dimer Unique pair of 2-cells on Γ∗on Γ: share a dimer:

    1

    2 3

    47

    10

    11

    1

    2 3

    47

    10

    11

    13

    21

    22

    23

    25

    IV. Therefore, the global bijection:

    (Dimers on Γ) ←→(

    Tilings of Γ∗ byunique pair of 2-cells

    ).

    10

  • In particular, on the dual cell complex of bipartite graph:1

    2 3

    47

    10

    11

    13

    21

    22

    23

    25

    1

    2 3

    47

    10

    11

    13

    21

    22

    23

    25

    (two ‘‘colorings” of the same tile).

    43

    35

    4431

    31

    32

    35

    34

    35

    34

    44

    45

    14 15

    10

    13 16

    19

    11

  • Limit topology := stacked3D boxes; projection of2D rhombus tiling:

    1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    13

    14 15

    16

    17

    18

    19

    20

    21 22

    23

    24

    25

    26

    29

    30 31

    32

    33

    34

    3536

    37

    39

    41

    42

    43

    44

    45

    46

    47

    48

    5155

    57

    59

    60 10

    64

    65

    66

    68

    69

    70

    71

    72

    74

    76

    78

    79

    80

    81

    83

    84

    85

    90

    91

    92

    100 102

    12

  • 1.3 Space of height functions

    Definition. Let Γ⊂Mg := planar, bipartite, hexagonal, such thatDimers ←−[ Discrete Surfaces.

    The space of height functions is the partially ordered by overlap, given by:

    HΓdef== {π : faces (Γ)→ Z}

    π+ 13

    π+ 239 5

    13 10

    16 14π

    π+ 13 π+23

    π+ 139 5

    13 10

    16 14π

    π + 23

    with respect to normalization π(f0)=0 of the reference face f0.

    Proposition.(i). Let ∂Γ:= boundary faces. Then, πD

    ∣∣∂Γ

    does not depend on D.(ii). πD1D2 = πD1−πD2.

    Proof. ♡.

    13

  • Theorem. The dimer configuration probability is given by

    Prob(D)= 1Z

    ∏f

    qπD(f)f

    ∣∣∣∣Z=∑π ∈HΓ

    ∏f

    qπ(f)f , qf =

    ∏ℓ∈ ∂f

    ωεℓℓ , π∈HΓ, D∼=π.

    Proof. By the combinatorial equivalence,{Dimers on Γ

    }∼=

    bijection

    {height functions

    }.

    The bijection then gives the measure. □

    Remark. Prob(D) :=“gauge” invariant: ω(ℓ) 7−→s(ℓ+)ω(ℓ) s(ℓ−). More so,qf := invariant (‘‘essential” parameters).

    Particular cases.

    (i).4

    9 13

    10

    52

    a

    bc

    acb

    =⇒ the uniform distribution:q = a−1b c−1a b−1c = 1.

    14

  • (ii). qf :=qt,Prob(π) ∝

    ∏tqπ(t)t .1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    13

    14 15

    16

    17

    18

    19

    20

    21 22

    23

    24

    25

    26

    29

    30 31

    32

    33

    34

    3536

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53 54

    55

    56

    145

    58

    59

    60

    61

    62

    63

    64

    65

    66

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    83

    84

    85

    87

    88 89

    146

    91

    92

    93

    94

    100 102

    103

    105

    108

    109

    110

    111112

    113

    114

    115 116

    117

    118 119

    120

    123

    124

    125 126 127 128

    129 130 131 132

    136

    137

    138

    139

    140

    141

    142

    57 90

    x

    t

    15

  • Remark.0

  • 1.4 Kasteleyn orientation and matrix

    6

    1

    8

    4

    5

    7

    3

    2

    9

    + −

    −+

    +−

    −+

    −−

    −+

    ++

    4

    3

    2

    1

    −−

    −+ .

    Definition. Let Γ⊂ (Z+)d :=CW-complex 1-skeleton (resp. genus g compactorientable surface cell-decomposition) closed connected embedding, endowedwith induced (counterclockwise) orientation ε(∂F) on every face boundary;Γ is Kasteleyn if ∀{i, j} edges ℓ, i ̸=j, arbitrary i-to-j orientations εK(iℓjℓ),∏

    ℓ∈ ∂F

    εKiℓjℓ = −1, ∀F ∈Γ∣∣ εKiℓjℓ :={−1 if ε(∂F) ∈ counter-εK(iℓjℓ)+1 if ε(∂F) ∈ εK(iℓjℓ).

    Let Γ:=Kasteleyn, weighted ω>0, ∀{i, j} edges ℓ, i ̸=j,ΣKij =

    ∑ℓ

    εKiℓjℓ ωiℓjℓ∣∣ ΣKij :=0 for i, j not adjoined and i=j loop.

    17

  • Proposition (existence). Kasteleyn orientation exists.Proof. ♡.Construction (bipartite case). Following Γ∗ spanning tree:

    1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    13

    14 15

    16

    17

    18

    19

    20

    21 22

    23

    24

    25

    26

    29

    30 31

    32

    33

    34

    3536

    37

    39 42

    43

    44

    45

    46

    47

    48

    57

    59

    60 62

    64

    65

    66

    68

    69

    70

    71

    72

    74

    76

    78

    79

    80

    81

    83

    84

    85

    90

    91

    100 102

    103

    105

    108

    113

    136

    137

    138

    139

    −−− +++

    −−−

    +++

    −−− +++

    +++ −−−−−−+++

    +++−−−

    −−− +++

    −−−+++

    −−−+++ −−−

    +++

    −−−+++

    −−− +++

    +++−−−

    −−−+++

    −−− +++

    +++−−−

    +++−−−

    +++−−− +++

    −−−

    −−−+++

    −−− +++

    +++ −−−

    −−−+++

    +++−−−

    −−− +++

    +++−−−

    −−−+++

    −−− +++

    +++−−−

    −−−+++

    −−− +++

    +++−−−

    −−−+++

    +++

    +++ −−−−−−

    −−− +++

    +++−−−−−−+++

    −−− +++

    −−−

    +++

    −−−+++ −−−

    +++

    +++−−−

    +++−−−

    −−−+++

    +++ −−−

    −−− +++

    −−−+++

    +++−−−

    −−− +++

    −−−+++

    −−−+++

    +++

    −−−

    +++

    −−−

    −−−

    +++

    +++−−−

    +++

    −−−

    Reduce Γ to small N×N→ exp(αN 2); choose ε(∂F); follow Γ∗ spanningtree, rooted outside Γ, from root; make εK(F) with each Γ∗ edge deletion.

    18

  • Definition. Two orientations are equivalent, if each is obtainable from theother through a sequence of orientation-reversing maps:

    147

    −→148

    5

    6

    7

    8

    9

    15

    17

    19

    −−−

    +++

    −−−

    +++

    +++

    −−−+++

    −−−

    +++−−−

    −−−

    +++

    10

    13

    14 15

    16

    19

    +++

    −−−

    +++

    −−−

    −−−+++

    Theorem. All Kasteleyn orientations of Γ planar are equivalent.Proof. Induction, ∀n

  • Remark. Deleting a vertex changes orientation to non-Kasteleyn at ‘‘holes”:

    1

    2

    4

    5

    6

    9

    10

    11

    13

    14

    29

    30

    66

    A

    B

    C

    1

    2

    5 10

    −1

    −1

    −1

    hAhBhC=(−1)3=−1

    1

    2

    4

    6

    9

    10

    11

    13

    14

    29

    30

    66 hABC=1, non-Kasteleyn orientation.

    That is, hAhBhC=−hABC.

    20

  • Remark. To convert the non-Kasteleyn orientation back to Kasteleyn:

    hAhBhC=1.

    21

  • Derivation. Given Γ⊂ (Z+)d := cycle-graph in plane, ∀ i, j=1, . . . , n

    ΣKij =

    {−ωij = ωji for ε(∂F) ∈ counter-εKij , ∀ i i j j, i i j jωij = −ωji for ε(∂F) ∈ counter-εKij , ∀ i i j j, i i j j0 for i, j not adjoined and loop i=j.

    Theorem (Kasteleyn). Every ±|detΣK|12 =: Pf(ΣK) ∈ Quot(K[D]),Γ ⊂ (Z+)d, non-vanishing monomial corresponds 1-1 to [σ], ∀D on Nνedges of class Cν | ν = 1, . . . , d, with respect to sgn(σ) := (−1)t(σ) wheret(σ) :=(σ(i∈N) |1≤ i≤n)−→ (i∈N |1≤ i≤n), ∀σ∈Aut(D), such that:

    (i) |Pf(ΣK)|=∑D∈D

    ∏ℓ∈D

    εℓ ωℓ∣∣∣Pf(ΣK)=∑

    σ= [σ]

    (−1)t(σ)n2∏

    ℓ=1

    ΣKσ(2ℓ−1)σ(2ℓ).

    (ii) Pf(ΣK)= 12n2

    1(n2

    )!

    ∑σ

    (−1)t(σ)n2∏

    ℓ=1

    ΣKσ(2ℓ−1)σ(2ℓ) =:∑

    N1, ..., Nd

    ∑D

    d∏ν=1

    (±)ωNνν .

    22

  • Proof. (ii) follows from (i) by Aut(D).

    To see (i): detΣK = det(−(ΣK)T) = det(−ΣK) = (−1)n detΣK implies

    detΣK:= strictly positive-definite square of a rational function of array ΣKij ,∀ i, j=1, . . . , n, n := even, on the Leibniz’s second-index permutations:

    ∑σ∈Sn

    n∏i=1

    (−1)t(σ)ΣKiσ(i)=n!/2∑σ=1

    n∏

    i=1

    σ(i) := given byeven permutations

    σ∈Sn

    (−1)t(σ)ΣKiσ(i) +n∏

    i=1

    σ(i) := given byodd permutations

    σ∈Sn

    (−1)t(σ)ΣKiσ(i)

    where

    σ : {(i∈N | 1≤ i≤n)} −→ {(σ(i∈N) | 1≤ i≤n)}

    and,t(σ) := (σ(i∈N) | 1≤ i≤n) −→ (i∈N | 1≤ i≤n).

    23

  • In particular, skew-symmetry ΣKiσ(i)=−ΣKσ(i) i | i≥σ(i) implies non-vanishingmonomials given by:

    n!/(n

    2

    )! 2

    n2∑

    σ=1

    (−1)t(σ)n2∏

    i=1

    ΣKτ1(2i−1)τ1(2i)

    n2∏

    i=1

    ΣKτ2(2i)τ2(2i−1)

    ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

    ∃ΣKτ1(2i−1)τ1(2i)=−ΣKτ2(2i)τ2(2i−1),∀ΣKτ2(2i)τ2(2i−1);

    t(σ)=even for n2 :=even,t(σ)=odd for n2 :=odd

    +

    2

    (n!/(n2

    )! 2

    n2

    2

    )∑σ=1

    (−1)t(σ)n∏

    i=1

    ΣKiσ(i)

    ∣∣∣∣∣∣t(σ)=odd forn2 :=even,

    t(σ)=even for n2 :=odd.

    24

  • That is,

    n!/(n

    2

    )! 2

    n2∑

    σ=1

    (−1)t(σ)+n2

    ( n2∏i=1

    ΣKτ1(2i−1)τ1(2i)

    )2 ∣∣∣∣∣∣t(σ)=even forn2 :=even,

    t(σ)=odd for n2 :=odd

    +

    2

    (n!/(n2

    )! 2

    n2

    2

    )∑σ=1

    (−1)t(σ)n∏

    i=1

    ΣKiσ(i)

    ∣∣∣∣∣∣t(σ)=odd forn2 :=even,

    t(σ)=even for n2 :=odd.

    25

  • Furthermore, the non-vanishing monomials are given by

    n!/(n

    2

    )! 2

    n2∑

    σ̃=[σ̃]=1

    (−1)t(σ)+n2+2×t(σ̃)

    ( n2∏ℓ=1

    ΣKσ̃(2ℓ−1)σ̃(2ℓ)

    )2 ∣∣∣∣∣∣t(σ)=even forn2 :=even,

    t(σ)=odd for n2 :=odd

    +

    2 ×

    (n!/(n2

    )! 2

    n2

    2

    )∑

    {σ̃= [σ̃] ̸= τ̃= [̃τ]}=1

    (−1)t(σ̃)n2∏

    ℓ=1

    ΣKσ̃(2ℓ−1)σ̃(2ℓ) × (−1)t(̃τ)

    n2∏

    ℓ=1

    ΣKτ̃(2ℓ−1)̃τ(2ℓ)

    ∀ [σ] :=Sn/(Sn

    2×S

    n22

    ).

    26

  • That is,

    n!/(n

    2

    )! 2

    n2∑

    σ̃=[σ̃]=1

    (−1)2×t(σ̃)( n2∏

    ℓ=1

    ΣKσ̃(2ℓ−1)σ̃(2ℓ)

    )2 ∣∣∣∣∣∣t(σ̃) :=(σ̃(i∈N) |1≤ i≤n)−→ (i∈N |1≤ i≤n)+

    2 ×

    (n!/(n2

    )! 2

    n2

    2

    )∑

    {σ̃= [σ̃] ̸= τ̃= [̃τ]}=1

    (−1)t(σ̃)+t(̃τ)n2∏

    ℓ=1

    ΣKσ̃(2ℓ−1)σ̃(2ℓ)

    n2∏

    ℓ=1

    ΣKτ̃(2ℓ−1)̃τ(2ℓ)

    ∀ [σ] :=Sn/(Sn

    2×S

    n22

    )=

    ( ∑σ= [σ]

    (−1)t(σ)n2∏

    ℓ=1

    ΣKσ(2ℓ−1)σ(2ℓ)

    )2 ∣∣∣∣∣∣t(σ) :=(σ(i∈N) |1≤ i≤n)−→ (i∈N |1≤ i≤n)∀ [σ] :=Sn

    /(Sn

    2×S

    n22

    ). □

    27

  • 1

    2

    3

    4

    5

    6

    0 1 1 1 1 11 0 1 1 1 11 1 0 1 1 11 1 1 0 1 11 1 1 1 0 11 1 1 1 1 0

    0 := non-adjoined i, j1,1,1 := adjoined i, j.

    To see |Pf(ΣK)|=Z, write on the non-vanishings, by partitions σ=[σ], ∀D :

    Z =∑

    σ= [σ]

    ∑D(σ)

    εKσ(1)σ(2) ωσ(1)σ(2) · · · εKσ(n−1)σ(n) ωσ(n−1)σ(n) =

    =∑

    σ= [σ]

    ∑D(σ)

    n2∏

    ℓ=1

    εKσ(2ℓ−1)σ(2ℓ) ωσ(2ℓ−1)σ(2ℓ).

    28

  • 1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 := non-adjoined i, j1,1,1 := adjoined i, j

    0 1 1 0 0 1 1 1 0 01 0 1 0 0 1 1 1 0 01 1 0 1 1 1 1 1 1 10 0 1 0 1 0 0 1 1 10 0 1 1 0 0 0 1 1 11 1 1 0 0 0 1 1 0 01 1 1 0 0 1 0 1 0 01 1 1 1 1 1 1 0 1 10 0 1 1 1 0 0 1 0 10 0 1 1 1 0 0 1 1 0

    .

    29

  • But the derived Pfaffian is given by

    Pf(ΣK)=

    σ ∈ Sn/(Sn

    2×S

    n22

    )

    =

    [σ]

    (−1)t(σ)n2∏

    ℓ=1

    ΣKσ(2ℓ−1)σ(2ℓ)︸ ︷︷ ︸depends only on σ

    =∑

    σ= [σ]

    depends only on σ︷ ︸︸ ︷∑D(σ)

    (−1)t(σ)n2∏

    ℓ=1

    εKσ(2ℓ−1)σ(2ℓ)

    n2∏

    ℓ=1

    ωσ(2ℓ−1)σ(2ℓ).

    Therefore, write

    Pf(ΣK) =∑D(σ)

    (−1)t(σ)n2∏

    ℓ=1

    εKσ(2ℓ−1)σ(2ℓ)

    n2∏

    ℓ=1

    ωσ(2ℓ−1)σ(2ℓ) = (sgn) · Z=

    (−1)t(σ) .

    where the first equality is well-defined by all partitions [σ], ∀ ℓ∈D. □

    30

  • Corollary. ⟨ k∏i, j=1

    σ(i)σ(j)⟩

    = Pf((ΣK)−1ξη

    ) ∣∣∣ ξ=1, . . . , kη=1, . . . , k.

    Proof. ♡.

    Remark. Pf(ΣK) := partition function, (ΣK)−1 := correlation functions.

    Remark. Kasteleyn theorem allows polynomial-time; skew-symmetric Gausselimination algorithm, by Pf(BABT )=det(B)Pf(A), does O(m3) time forPfaffian of size 2m matrix.

    31

  • 1.5 Grassmann integral

    Definition. Let (v1, . . . , vn) ∈ V := vector space, where∧nV := exterior

    algebra of V is defined by:(i) Elements:

    n∧i=1

    vi := v1∧· · ·∧vn =

    =1

    n!

    ∑σ∈Sn

    (−1)t(σ)n⊗

    i=1

    vσ(i) :=1

    n!

    ∑σ∈Sn

    (−1)t(σ)vσ(1)⊗ · · · ⊗ vσ(n);

    (ii) Multiplication:( n∧i=1

    vi

    )∧( n∧i=1

    wi

    ):= (v1∧· · ·∧vn) ∧ (w1∧· · ·∧wn) == v1∧· · ·∧vn ∧ w1∧· · ·∧wn.

    Then, with chosen basis a=(a1, . . . , an)∈V, the exterior algebra∧nV := {ai | aiaj+ajai = 0}is a Grassmann algebra.Proposition. The Grassmann algebra

    ∧nV is generated by V.Proof. ♡.

    32

  • Definition. The Grassmann integral on∧nV with respect to x is given by∫

    ∧nV f = fx , f = fx x + · · ·︸︷︷︸lowerorder termswhere x∈

    ∧nV ⊂R is an orientation.Lemma. x=

    ∏ni=1 ai if (a1, . . . , an) is a basis in V.

    Proposition. The formal Grassmann constraints are given by the integral:∫n∏

    i=1

    ai

    n∏i=1

    dai = (−1)n(n−1)

    2

    ∫n∏

    i=1

    ai dai = (−1)n(n−1)

    2 .

    where:(i).

    ∫n∏

    ν=1

    aiν da ={0 , k

  • Theorem. Let a=(ai)∈V be basis, where A∗=Aa=exp(12

    ∑ij aiAijaj

    )satisfies the Grassmann constraints, uniquely generalizing A∗ for allKasteleyn matrices A satisfying the Grassmann constraints. Then:

    (i) Pf(A) =∫∧nV

    exp(1

    2

    ∑ij

    aiAijaj

    )da.

    (ii) Pf(

    0 A−At 0

    )= det(A).

    (iii) (Pf(A))2 = det(A).

    (iv) ∂∂Ai1j1

    · · · ∂∂Aikjk

    Pf(A) =

    = Pf(A) · Pf((ΣK)−1ab )∣∣∣ a = i1, . . . , ikb = j1, . . . , jk .

    34

  • Proof.(i). Write:∫∧nV exp

    (1

    2⟨a,Aa⟩

    )da =

    1(n2

    )!

    1

    2n2

    ∫∧nV ⟨a,Aa⟩

    n2 da

    such that∫⟨a,Aa⟩

    n2 da =

    ∫ai1aj1 · · · ain

    2ajn

    2Ai1 j1 · · ·Ain

    2jn2

    = (−1)σ Ai1 j1 · · ·Ain2jn2

    σ :((i1, j1) , . . . ,

    (in2, jn

    2

    ))→ (1, . . . , n) .

    This implies ∫∧nV exp

    (1

    2⟨a,Aa⟩

    )da =

    1(n2

    )!

    1

    2n2

    Pf(A) .

    Use the integral formula to prove II, III, IV. ♡.

    35

  • Proof (hints).

    (ii). Choosing splitting V = W ⊕W∗ by matrix block structure, suchthat the Grassmann algebra of V ∼= algebra (tensor product) generated byci, bi | i=1, . . . , n2 , with relations cicj=−cjci, cibj=−bjci, and b1bj=−bjbi:

    (a1, . . . , an) =

    =(c1, . . . , cn2︸ ︷︷ ︸

    basis inW

    , b1, . . . , bn2︸ ︷︷ ︸basis inW ∗

    )then ⟨

    a ,

    (0 A−At 0

    )a

    ⟩= 2 ⟨c, Ab⟩ .

    Hence, prove ∫∧n(W⊕W∗)

    exp (⟨c, Ab⟩) dc db = det (A).

    (iii). Similar.

    36

  • (iv).∫

    exp(1

    2⟨a,Aa⟩ + ⟨a,η⟩

    )da =

    =

    ∫exp(1

    2

    ⟨a + A−1η, A

    (a + A−1η

    )⟩− 1

    2

    ⟨η, A−1η

    ⟩)da

    = Pf(A) exp(−12

    ⟨η, A−1η

    ⟩).

    ∂Ai1j1· · · ∂

    ∂AikjkPf(A) =

    =

    ∫ai1aj1 · · · aikajk exp

    (1

    2⟨a,Aa⟩

    )da

    =

    (∂

    ∂η

    )2k ∫exp(1

    2⟨a,Aa⟩ + ⟨η, a⟩

    )da.

    Prove the Pfaffian formula for the correlation functions. ♡.

    37

  • 1.6 Kasteleyn solution for bipartite graph

    Given Γ⊂R2 endowed with configuration and Kasteleyn orientation

    ZΓ= εKΓ

    ∫exp(12

    ∑ij

    ai (ΣKΓ )ij aj

    )da

    ∣∣∣∣ εKΓ :=(−1)σ εKσ1σ2· · · εKσn−1σn∈{±1}n= |V (Γ)|.In addition, Γ:= bipartite implies

    ΣKΓ =

    (0 BKΓ

    −(BK)tΓ

    0

    ) ∣∣∣∣∣∣∣∣∣∣BK : RV◦(Γ)→RV•(Γ)

    RV (Γ)=RV•(Γ)⊕RV◦(Γ)

    dim(RV•(Γ))=dim(RV◦(Γ))= n2V (Γ)=V•(Γ) ⊔ V◦(Γ), |V (Γ)|=n.

    Identifying V•(Γ), V◦(Γ) via a diagram {b}∼{ω} with ‘‘hole”

    ΣKΓ =

    (0 CKΓ

    −(CKΓ )t 0

    )for RV•(Γ)⊕ RV◦(Γ)←↩

    ∣∣∣CKΓ :=RV◦(Γ)←↩where ←↩ denotes recursive invocations.

    38

  • Then:

    (i). ZΓ = |det(CKΓ )|

    (ii).⟨

    σb1w1 · · ·σbkwk⟩=

    ∂ ω(b1w1)· · · ∂

    ∂ ω(bkwk)ln ZΓ =

    = det(((CKΓ )

    −1)b̂ w

    ) ∣∣∣∣ b̂ = b̂1, . . . , b̂kw = w1, . . . , wkwhere the inverse-matrix element b̂ is the white vertex identified with b.

    Remark. The ‘‘Physical” meaning of (ii) is given by⟨σb1w1 · · ·σbkwk

    ⟩=

    =

    ∫ψ∗b1w1· · ·ψ

    ∗bkwk× exp

    (ψ∗CKΓ ψ

    )×(∫

    exp(ψ∗CKΓ ψ

    )dψ∗ dψ

    ).

    That is, it corresponds to correlation functions in free fermionic model.

    39

  • 1.7 Dimer monomer relation

    Γ

    removevertices andadjacent edges

    2

    4

    5

    29 32

    36

    37

    229

    36

    3765

    66

    145

    3

    7 8

    12

    21 22

    33

    39

    41

    42

    17

    22

    2342

    46

    51

    52

    62

    68

    126

    23

    46

    51

    68

    70

    74

    76 81

    87127

    Monomers Dimers.

    40

  • For monomer coverΓw1w2b1b2

    b1

    b2

    w1

    w2

    the monomer-monomer correlation functions are given by

    Mb1···bnw1···wn =ZΓw1···wnb1···bn

    ZΓ.

    41

  • Remark. If w1 and b1 are adjacent, then we have a dimerΓ

    .

    Remark. The monomer-monomer correlation functions are a special case ofdimer models on surfaces with nontrivial fundamental group.

    .In this case, #([K])=22g+n−1.

    42

  • 1.8 Partition function as sum of Pfaffians

    Theorem.Z

    dimers

    Γ⊂Mg =1

    2g

    ∑[K]

    Arf(qKD0)εK(D0) · Pf(ΣK)

    ∣∣Arf(·) := sgn.where:

    [K] := equivalence classes of Kasteleyn orientations, 22g in total

    [qKD0] := quadratic form on H1(Σ,Z2) associated with Kasteleyn

    orientation on reference configuration D0εK(D0) := (−1)σεKσ1σ2· · · ε

    Kσn−1σn

    σ∈Sn, [σ] := Sn/(S

    n22 ×Sn2

    )n := number of vertices.

    Proof. ♡.

    43

  • Remark. In particular:

    I. For bipartite graphs on Mg :

    height function :== section of the non-trivialZ-bundle.

    II. For fundamental cycles (a1, . . . , ag, b1, . . . , bg) :

    Z(Ha1, . . . ,Hag,Hb1, . . . ,Hbg

    )=

    =∑D

    ∏ℓ∈D

    ω(ℓ)g∏

    i=1

    exp(∑

    i

    Hai∆aih +

    +∑i

    Hbi∆bih)

    where ∆Ch := change in height function along every noncontractible cycleC onMg.

    44

  • 1.9 Thermodynamic limit of bulk interactions

    N

    N

    N

    uniform measureProb(h)= 1|HΓ|N→∞ .

    45

  • Theorem (Schur process; Okounkov & R). Let φε :Z2 ↪→R2 |D⊂R2.

    ε

    ε

    D such that :{ ε→0, |Dε|→∞Dε := φε

    (Z2)∩D

    .

    Then, for stacks of cubes with measure

    Prob(π) =

    ∏tqπ(t)t∑

    π

    ∏tqπ(t)t

    ∣∣∣∣ π∈HΓ , π∼=D,there is an existence of

    Thermodynamic limit (|Dε|→∞) ++ Scaling limit (q=e−ε, ε→+0).

    Proof. ♡.

    46

  • a1N b1N a2N b2N

    | uN | vN |where u+v = a1+a2+b1+b2, N =ε−1, q=e−ε.

    47

  • 1.10 Enumeration of perfect matchings in graphs

    Involves computation of matching polynomials using the derived Kasteleyndeterminantal method:

    • Γ⊂Mg :=m×n planar square lattice without closed boundary:µ(Γ;m,n) :=

    2mn2

    m∏i=1

    n2∏

    j=1

    √cos2

    (πi

    m + 1

    )+ cos2

    (πj

    n + 1

    )n := even.

    Or,= 0, for n := odd.

    Proof. ♡.

    48

  • • Γ⊂Mg :=m×n cylindrical square lattice:µ(Γ;m,n) :=

    2mn2

    m∏i=1

    n2∏

    j=1

    √sin2

    (π(2i−1)

    m

    )+ cos2

    (πj

    n + 1

    )n := even.

    Or,µ(Γ;m,n) :=

    2mn2 −

    m2 +1

    m∏i=1

    n2∏

    j=1

    √sin2

    (π(2i−1)

    m

    )+ cos2

    (πj

    n + 1

    )n := odd.

    Proof. ♡.

    49

  • • Γ⊂Mg :=m×n toroidal square lattice:µ(Γ;m,n) :=

    2mn2 −1

    m∏i=1

    n2∏

    j=1

    √sin2

    (π(2i−1)

    m

    )+ sin2

    (2πj

    n

    )+

    m∏i=1

    n2∏

    j=1

    √sin2

    (2πi

    m

    )+ sin2

    (π(2j−1)

    n

    )+

    m∏i=1

    n2∏

    j=1

    √sin2

    (π(2i−1)

    m

    )+ sin2

    (π(2j−1)

    n

    )

    n := even.

    Or,= 0, for n := odd.

    Proof. ♡.

    50

  • • Γ⊂Mg := 6×8 planar square lattice without closed boundary:µ(Γ;m,n) :=

    16777216

    (1

    4+ sin2

    ( π14

    ))(sin2

    ( π18

    )+ sin2

    ( π14

    ))(14+ sin2

    (3π

    14

    ))×(

    sin2( π18

    )+ sin2

    (3π

    14

    ))(1

    4+ cos2

    (π7

    ))(cos2

    (π9

    )+ cos2

    (π7

    ))×(

    cos2(π7

    )+ cos2

    (2π

    9

    ))(sin2

    ( π18

    )+ cos2

    (π7

    ))×(

    sin2( π14

    )+ cos2

    (π9

    ))(sin2

    ( π14

    )+ cos2

    (2π

    9

    ))×(

    sin2(3π

    14

    )+ cos2

    (π9

    ))(sin2

    (3π

    14

    )+ cos2

    (2π

    9

    ))

    51

  • • Γ⊂Mg := 6×8 cylindrical square lattice:µ(Γ;m,n) :=

    5242880

    (1

    4+ sin2

    ( π18

    ))2 (1 + sin2

    ( π18

    ))(14+ cos2

    (π9

    ))2(1 + cos2

    (π9

    ))(14+ cos2

    (2π

    9

    ))2(1 + cos2

    (2π

    9

    ))• Γ⊂Mg := 6×8 toroidal square lattice:µ(Γ;m,n) :=

    8388608

    (18225

    131072+

    (1

    4+ sin2

    (π8

    ))4(1 + sin2

    (π8

    ))2(14+ cos2

    (π8

    ))4(1 + cos2

    (π8

    ))2+ sin4

    (π8

    )(34+ sin2

    (π8

    ))4cos4

    (π8

    )(34+ cos2

    (π8

    ))4)

    52

  • 2 Special cases

    Points:(i). Reformulate Kasteleyn Grassmann integral by transfer-matrices (for

    special domains)

    (ii). Compute inverse of Kasteleyn operator

    (iii). Find scaling limit

    (iv). Derive variational principle for limit topologies.

    53

  • 2.1 Grassmann integral kernel

    Let∧nV :={ai | aiaj+ajai = 0} be Grassmann algebra generated by V, for

    a chosen basis a=(a1, . . . , an)∈V.For vectors ψ∈

    ∧nV , writeψ(a)=

    n∑k=0

    n∑i1 .

    Pair∧nV ∗⊗∧nV →R by⟨

    φ(a∗), ψ(a)

    ⟩ def==

    n∑{i}<

    φik···i1 ψi1···ik .

    54

  • Choosinga1, . . . , an ∈

    ∧nV , a∗n , . . . , a∗1 ∈ ∧nV ∗and

    a∗n , . . . , a∗1 , a1, . . . , an ∈∧nV ∗⊗∧nV

    then ∫n∏

    ν=1

    a∗iνn∏

    ν=1

    ajν da∗ da =

    {0 , k ̸= n

    (−1)(

    σ + τ + n(n−1)2)

    , k = n

    σ : (i1, . . . , in)→ (1, . . . , n)τ : (j1, . . . , jn)→ (1, . . . , n).

    Proposition.⟨φ(a∗), ψ(a)

    ⟩=

    ∫exp(∑

    i

    a∗i ai)

    φ(a∗) ψ(a) da∗ da .

    Proof. Exercise.

    55

  • Proposition. Let A :V →V such thatψA(a) =

    ∑{i}< , {j}<

    a{i}< A{i}

  • 2.2 Vertex operators

    (i). Fermionic Fock space: For ⟨Vm⟩∈CZ+12

    F :=

    {Vm1 ∧ Vm2 ∧ · · ·

    ∣∣ mi ∈ Z+ 12mi+1 = mi−1, i≫ 1

    }.

    (ii). Clifford algebra:

    ClZ :=

    ⟨ψm, ψ∗m

    ∣∣∣ m ∈ Z+12

    ⟩ψm ψm′ + ψm′ ψm = ψ∗m ψ∗m′ + ψ∗m′ ψ∗m = 0ψm ψ∗m′ + ψ∗m′ ψm = δmm′ .

    (iii). Clifford algebra acts on Fock space F :ψm vm1 ∧ vm2 ∧ · · · = vm ∧ vm1 ∧ vm2 · · ·

    ψ∗m vm1 ∧ vm2 ∧ · · · =∞∑i=1

    (−1)i δmim ×

    × vm1 ∧ · · · ∧ v̂m1 ∧ · · ·

    57

  • (iv). Heisenberg algebra:⟨αn∣∣ n∈Z\{0}⟩ : [αn,αn′] = −n δn,−n′ .

    (v). Heisenberg algebra acts on F :• As part of Bose-Fermi correspondence in 1D:

    αn 7−→∑

    m ∈ Z+12

    ψm+n ψ∗m .

    • As operator in F :[αn,ψk] = ψk+n[αn,ψ∗k

    ]= −ψ∗k−n .

    (vi). Vertex operators (in F ) :

    Γ±(x) = exp( ∞∑

    n=1

    xn

    nα±n

    )(Γ−(x) v, w) = (v, Γ+(x)w) = (Γ+(x)w, v).

    58

  • (vii). Commutation relations:

    Γ+(x) Γ−(y) = (1−x) · Γ−(y) Γ+(x)

    Γ+(x)ψ(z) = (1−z−1 x)−1 · ψ(z) Γ+(x)

    Γ−(x)ψ(z) = (1−x z)−1 · ψ(z) Γ−(x)

    Γ+(x)ψ∗(z) = (1−z−1 x) · ψ∗(z) Γ+(x)

    Γ−(x)ψ∗(z) = (1−z x) · ψ∗(z) Γ−(x).

    (viii). Eigenvectors:

    Γ−(x)∏i

    ψ∗(wi)∏j

    ψ∗(zj)V (n)0 =

    =∏i

    (1−x zi)−1∏j

    (1−xwj)∏i

    ψ∗(wi)∏j

    ψ∗(zj)V (n)0

    where V (n)0 = vn−12 ∧ vn−32 ∧ · · ·

    59

  • 2.3 Fermionic Kasteleyn operator

    [Diagram] [Diagram]

    where b(h, t)=(h, t− 12

    ), and w(h, t)=

    (h, t+ 12

    ).

    The K-matrix over (b, w), using above-chosen diagram b ∼ w is:

    K(h, t) = (h, t)−(h+

    1

    2, t+1

    )+ xh,t

    (h−1

    2, t+1

    ).

    [Diagram]

    60

  • Placing fermions a∗h, t and ah, t , respectively, at b(h, t) and w(h, t), then

    a∗Ka =∑h,t

    a∗h,t ah,t −∑h,t

    a∗h+12 , t+1

    ah,t +∑h,t

    a∗h−12 , t+1

    ah,t xh,t =

    =∑t

    (a∗t at + atV a∗t+1 + atV −1xt a∗t+1

    )in addition to considering boundary conditions

    [Diagram]

    Prob (π) ∝∝∏tq|π(t)|t in previousnotations

    qh,t=qt

    where the assumption is that xh,t=xt .

    61

  • Theorem. WriteZ =

    ∫exp(a∗Aa

    )da∗ da =

    =⟨Γ−(x−12

    )· · ·Γ−

    (xu0+

    12

    )Γ+(x1

    2

    )· · ·Γ+

    (xu1+

    12

    )V

    (0)0 , V

    (0)0

    ⟩.

    Proof. Outline:∫· · · exp

    (a∗t−1 at−1

    )· exp

    (at−1

    (V −V −1Xt

    )a∗t)·

    · exp(a∗t at

    )· exp

    (at(V −V −1Xt

    )a∗t+1

    )· · · =

    = · · ·(V −V −1Xt−1

    )∼−1︸ ︷︷ ︸

    νt−1

    ·(V −V −1Xt

    )∼−1︸ ︷︷ ︸

    νt

    · · ·

    where Γ+(xt)=νt−1 or Γ−(xt)=νt depending on t, Ã :=A such that V ←↩is lifted to

    ∧∞2 V , given by V :=

    ⊕m∈Z+12

    C vh , with boundary conditions, etc.

    Remark. Direct proof exists combinatorially, without K-orientation formula.

    62

  • Remark. Write

    Z =

    u1−12∏m=12

    −12∏m′=u0+

    12

    (1−x−m′ x

    +m

    )−1.

    Theorem. (Okounkov & R., 2005).⟨σ(h1t1) · · ·σ(hktk)

    ⟩= det(K((ti, hi), (tj, hj)))1⩽i, j⩽k

    K((ti, hi), (tj, hj)) =

    =1

    (2πi)2

    ∫|z|

  • 2.4 Thermodynamic limit with scaling

    [Diagram]

    x+m = aqm

    x−m = a−1qm

    }assumed

    corresponds to Prob(π) ∝ q |π| .

    64

  • 2.5 Asymptotics of partition functions

    Consider limit ε→0, q=e−ε, u1=ε−1v1, u0=ε−1v0, where v1, v0 are fixed:

    Z =∏

    u0

  • Consider limit ε→0 for ti=ε−1τi, h1=ε−1χi, where τi, χi are fixed:

    [Diagram](τi, χi)

    in the bulkK((t1, h1), (t2, h2)) =

    =1

    (2πi)2

    ∫Cz

    ∫Cw

    exp(ε−1 (S(z, t1, χ1)− S(z, t2, χ2))

    · (zw)1/2 (z−w)−1 dz dw .S(z, t, χ) =

    = −(

    χ+τ2−u0

    )lnZ +

    + Li2(ze−v0

    )+ Li2

    (ze−v1

    )− Li2(z)− Li2

    (ze−τ

    )where

    Li2(z) =z∫0

    t−1 ln(1−t) dt .

    66

  • 2.6 Critical points of S (z)

    exp(

    χ+τ2

    )=

    (1−ze−v0) (1−ze−v1)(1−z)

    (1−ze−τ

    )gives quadratic equation. That is, 2 real solutions, or 2 complex conjugate,or zero discriminant.

    [Diagram]

    ∂χh0 (τ, χ) =1

    πarg(z0)

    ⟨σ(h, t)

    ⟩= K((t, h), (t, h))→ ε ∂χh0(τ, χ)

    67

  • 2.7 Results of steepest descent

    K((t1, h1), (t2, h2)) = −ε2π·( exp(ε−1(S1(z1)−S2(w2)))(z1−w2)

    √−w2S ′′2 (w2)

    √z1S ′′1 (z1)

    −exp(ε−1(S1(z1)−S2(w2))

    )(z1−w2)

    √−w2S ′′2 (w2)

    √z1S ′′1 (z1)

    + c. c.

    )· (1 +O(1))

    where z0(χ, τ) := inner of limit shape H+ :={z∈C, Im z>0} such thatz1 :=z0(χ1, τ1), w2 :=z0(χ, τ).

    Therefore,

    K((t1, h1), (t2, h2)) =ε2π

    exp(ε−1(Re(S(z0(χ1, τ1)))−Re(S(z0(χ2, τ2))))

    ·(exp(iε−1(Im(S ′(z1))−Im(S(w2))))

    (z1−w2)+

    exp(iε−1(Im(S ′(z1))−Im(S(w2)))

    )(z1−w2)

    + c. c.

    )· (1 +O(1)) (∗) .

    68

  • This suggests convergence of K-orientation fermions to free Dirac fermions:1√ε

    ψx⃗ = exp(ε−1Re(S(z0))

    )·(

    ψ+(z0) exp(iε−1Im(S(z0))

    )+

    + ψ−(z0) exp(iε−1Im(S(z0))

    ))· (1+O(1))

    1√ε

    ψ∗x⃗ = exp(ε−1Re(S(z0))

    )·(

    ψ∗+(z0) exp(iε−1Im(S(z0))

    )+

    + ψ∗−(z0) exp(iε−1Im(S(z0))

    ))· (1+O(1))

    whereE(ψ∗±(z) ψ±(w)

    )=

    1

    z − wE(ψ∗±(z) ψ∓ (w)

    )= E

    (ψ∗ψ∗

    )= E(ψ ψ) = 0

    ψ∗±(z), ψ±(w) are spinors:

    ψ∗±(z) = ψ∗±(w)

    öw

    ∂z

    ψ±(z) = ψ±(w)√

    ∂w

    ∂z.

    69

  • The correlation functions are derived as follows:

    9 5

    13 10

    16 14x⃗

    ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

    ⟨(σx⃗1−⟨σx⃗1⟩) (σx⃗2−⟨σx⃗2⟩)

    ⟩= K12K21 =

    = ε2

    (2π)2

    ( ∂z1∂x1

    ∂w2∂x2

    (z1−w2)2−

    ∂z1∂x1

    ∂ w2∂x2

    (z1−w2)2+ c. c.

    × (1+O(1)).

    That is, correlation functions are given byσx⃗1−⟨σx⃗1⟩ = ε ∂x φ(z0(τ, x)) + · · ·

    where φ(z) := Gaussian free field on H+.

    The Green’s function of the Dirichlet problem on H+ is given by

    ⟨φ(z)φ(w)⟩ = 12π

    ln∣∣∣z−wz−w

    ∣∣∣.And, the Bose-Fermi correspondence is given by

    ∂xφ = : ψ̃(z, z) ψ̃(z, z) : · · · .

    70

  • 2.8 Scaling limit in the Kasteleyn operator

    For lattice L such that Γ=Dε := φε(L)∩D

    Let ΣKΓ := difference operator. Then(ΣKΓ)x·Gx,y = δx,y

    where ε→0 in asymptotic for Gx,y.Particular cases.(i). Hexagonal lattices, with weights as above, such that

    qt = e−ε f (t), t = τ

    ε, ε→0.

    Theorem. Gx,y := same as (⋆) , with different z0(τ, x).

    (ii). Periodic lattices.

    71

  • 2.9 Limit shapes and variational principle

    (i). For the N×M torus[Diagram]

    Z(H, V ) =∑D

    ∏ℓ

    ω(ℓ) exp(H∆ahD + V∆bhD)

    =1

    2

    (Pf(AK1

    )+ Pf

    (AK2

    )+ Pf

    (AK3

    )− Pf

    (AK4

    ))where N,M →∞, NM :=fixed.And, ω (ℓ)=1 gives Kasteleyn matrices’ eigenvalues by Fourier transform.

    Theorem. (McCoy & Wu, 1969; Kenyon & Okounkov, 2005).

    limN,M→∞

    1

    NMlnZNM =

    ∮ ∮ln |1+zw| dz

    z

    dw

    w

    = f (H, V ) :=

    {|z| = eH|w| = eV .

    72

  • (ii). Taking Legendre transformσ(s, t) = max

    H,V(Hs + Vt − f (H, V ))

    then ∑D

    1 =∑D

    ∏D

    w (e) = exp(NM σ(s, t) · (1 +O(1)))

    where∆ahDN

    = s,∆bhDM

    = t, N,M →∞, NM

    fixed.

    (iii). For the domain[Diagram]

    ∆ah = sN, ∆bh = tM .

    Theorem. (Cohn, Kenyon, & Propp, 2000). As a result,∑D

    1 = exp(NM σ(s, t) · (1 +O(1)))

    with those boundary conditions of height function hD.

    73

  • (iv). For the domain[Diagram] Ni ×Mj

    ZDε =∑

    values of

    height functionson

    boundariesbetween rectangles

    Z

    Mj

    Ni(h bound)

    =∑

    {∆xh, ∆yh}ij

    exp( ∑

    Mj

    Ni

    NiMj σ(∆xhMj

    ,∆yhNi

    ))

    = exp(

    ε−2∫D

    σ (∂xh0, ∂yh0) dx dy (1 +O (1)))

    where h0 :=minimizer forS [h] =

    ∫D

    σ (∂xh0, ∂yh0) dx dy .

    74

  • Theorem. (Cohn, Kenyon, & Propp, 2000). In addition,

    limε→0

    ε2 lnZDε =∫D

    σ(−→∇h0

    )dx dy

    such that• h0 is a minimizer• 0 < ∂xh, ∂yh < 1• h0

    ∣∣∂D = b, the boundary condition appearing in the limit ε→0.

    [Diagram]

    for height functionh = ε−1h0 + φ = ε−1 (h0 + εφ)

    where h0 := the limit shape, and φ := fluctuations.

    75

  • 2.10 Physics way of describing fluctuations

    S[h0 + εφ] = S[h0] +ε2

    2

    ∫∫D

    aij(x)∂iφ ∂jφ d2x

    aij(x) = ∂i∂j φ(s, t)s = ∂1h0t = ∂2h0Partition function is given by

    Z = exp(ε−2S(h0))∫

    exp(12

    ∫∫D

    aij(x)∂iφ ∂jφ d2x)Dφ

    where D := scalar field with Riemannian metric induced by h0.Correlation functions are given by

    ⟨φ(x)φ(y)⟩ = G(x, y)where G :=Green’s function for ∆=∂i(aij∂j).

    Conjecture. G := same as from asymptotics of Kasteleyn operators.

    Remark. The conjecture := theorem always in certain cases (R., et. al.).

    76

  • 2.11 Conclusion - limit topology phenomena, ongoing

    1. How to make such pictures of (i.e. simulate) random configuration:(i). Monte Carlo for exp

    (∝10002

    )(ii). Sampling around most probable region(iii). Markov Chain Monte Carlo method.

    2. How to describe limit topologies and fluctuations analytically:(i). Kasteleyn matrix solution and correlation function(ii). Variational principle: Minimizing large deviation functionals(iii). Boundary conditions.

    77

  • Thank You!

    78