Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S....

16
Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 1 / 16

Transcript of Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S....

Page 1: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Lattice Boltzmann Method for Fluid Simulations

Yuanxun Bill Bao & Justin Meskas

Simon Fraser University

April 7, 2011

1 / 16

Page 2: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Ludwig Boltzmann and His Kinetic Theory of Gases

The Boltzmann Transport Equation

∂f

∂t+ ~v · ∇f = Ω

(1) f(~x, t) is the particledistribution function

(2) ~v is the particle velocity

(3) Ω is the collision operator

Figure 1: Ludwig Boltzmann

I Gases/Fluids contain a large number of small particles with random motion

I Interchange of energy through particle streaming and collision

I Microscopic distribution function ←→ Macroscopic gases/fluids variables(pressure, velocity)

2 / 16

Page 3: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Lattice Boltzmann Method

fi(~x+ c~ei∆t, t+ ∆t)− fi(~x, t)︸ ︷︷ ︸Streaming

= − [fi(~x, t)− feqi (~x, t)]

τ︸ ︷︷ ︸Collision

I c =∆x

∆t, lattice speed,

I τ is the relaxation parameter, τ =1

c2∆t

(3ν +

1

2

),

ν is the kinematic viscosity

I fi is the discrete distribution function, i = 1...9Figure 2: D2Q9 lattice

I ~ei =

(0, 0) i = 1(cos[(i− 2)π

2], sin[(i− 2)π

2]) i = 2, 3, 4, 5√

2(cos[(i− 6)π2

+ π4

], sin[(i− 6)π2

+ π4

]) i = 6, 7, 8, 9

3 / 16

Page 4: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Lattice Boltzmann Method

The Streaming Step

Figure 3: Streaming Process

The Collision Step (BGK collision operator)

feqi (~x, t) = wiρ(~x)

[1 + 3

~ei · ~uc2

+9

2

(~ei · ~u)2

c4− 3

2

~u · ~uc2

],

where wi is the weights,

wi =

4/9 i = 11/9 i = 2, 3, 4, 51/36 i = 6, 7, 8, 9

4 / 16

Page 5: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Lattice Boltzmann Method

I to recover the macroscopic density and velocity,

ρ(~x, t) =9∑i=1

fi(~x, t), ~u(~x, t) =1

ρ

9∑i=1

fi~ei

Finite Difference Perspective

fi(~x, t+ ∆t)− fi(~x, t)∆t

+fi(~x+ ~ei∆x, t+ ∆t)− fi(~x, t+ ∆t)

∆x

= −fi(~x, t)− feqi (~x, t)

τ

I In our case ∆t = ∆x = 1. This recovers the Lattice Boltzmann Method.

5 / 16

Page 6: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Boundary Conditions: Bounce-back

Figure 4: Illustration of on-grid bounce-back

Figure 5: Illustration of mid-grid bounce-back

I Equivalent to no-slipboundary condtions

I On-grid — 1st orderMid-grid — 2nd order

I Easy to implement forcomplex geometries

I Applicable to flows withimpermeable walls

6 / 16

Page 7: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Boundary Conditions: Zou-He

Figure 6: Zou-He velocity boundary

condition

Given the velocity ~uL = (u, v) on the leftboundary,

ρ =1

1− u [f1 + f3 + f5 + 2(f4 + f7 + f8)]

f2 = f4 +2

3ρv

f6 = f8 −1

2(f3 − f5) +

1

6ρu+

1

2ρv

f9 = f7 +1

2(f3 − f5) +

1

6ρu− 1

2ρv

I Other boundary conditons: periodic, free-slip, frictional-slip, sliding walls,the Inamuro method . . . etc.

7 / 16

Page 8: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 1: Plane Poiseuille flow

Figure 7: Illustration of a Poiseuille flow

I Time independent flowdriven by a pressuregradient ∆P = P1 − P0

I Periodic BCs at the inletand outlet of the flow

I No-slip BCs on the solidwalls

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

35

u(y)

y

parabolic velocity profile

LBMAnalytical

100 101 10210 5

10 4

10 3

10 2

10 1

N

err

or

convergence of bounce back boundary conditions

mid gridon grid2nd order1st order

Figure 8: Parabolic velocity profile ∆P = 0.0125, H = 32, ν = 0.05

8 / 16

Page 9: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 2: Lid Driven Cavity

I 2D fluid flow driven by a top moving lid

I No-slip (bounce-back) BCs on the otherthree stationary walls

I Zou-He BCs on the moving lid

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Stream Trace for Re = 400

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Stream Trace for Re = 1000

y

x

Figure 9: Stream traces for Re = 400 and 1000. The Vd = 0.0868 and 0.2170 respectively.

Other parameters: ν = 1/18, τ = 2/3, 256 × 256 lattice9 / 16

Page 10: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 3: Flow past a Cylinder

I No-slip BCs on the solidwalls and cylinder

I Zou-He velocity anddensity BCs at the inletand outlet

Regimes of the Flow

I Re < 5: Laminar flow, no separation of streamlines

10 / 16

Page 11: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 3: Flow past a Cylinder

I 5 < Re < 40: A fixed pair of symmetric vortices

I 40 < Re < 400: Vortex street

11 / 16

Page 12: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 3: Flow past a Cylinder

Figure 10: Vorticity plot of flow past a cylinder at Re = 150, a Karman vortex street is generated

12 / 16

Page 13: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Simulation 4: Rayleigh-Benard Convection

Nondimensional Boussinesq Equations

∇ · ~u = 0

∂~u

∂t+ ~u · ∇~u = Pr∆~u+Ra · PrT z −∇p

∂T

∂t+ ~u · ∇T = ∆T Figure 11: Illustration of

Rayleigh-Benard convection

I Ra: Rayleigh number , Pr: Prandtl number

I A D2Q9 model for ~u and a D2Q5 model for T , and the two models arecombined into one coupled model for the whole system

I BCs on ~u: No-slip (bounce-back) BCs on the top/bottom walls, periodicBCs on the two vertical walls

I BCs on T : Zou-He BCs on the top/bottom walls, periodic BCs on the twovertical walls

13 / 16

Page 14: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Convection cells

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50 Streamlines (Ra = 20000, t = 8100)

x axis y

axis

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50 Streamlines (Ra = 2000000, t = 5800)

x axis

yax

is

14 / 16

Page 15: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

Summary

Features of Lattice Boltzmann Method

I A celluar automata model, as well as a special FD method for Boltzmannequation

I Errors are 2nd order in space

I Very successful for simulating multiphase/multicomponent flows

I Simulating flows with complex boundary conditions are much easier usingLBM (porous media flow)

I LBM can be easily parallelized

A Controversy

I The compressible Navier-Stokes equations (NSEs) can be recovered fromLBM through Chapman-Enskog expansions

I A method with artificial-compressibilty for the incompressible NSEs

I Some other LBMs have been developed for modelling the incompressibleNSEs in the incompressible limit

15 / 16

Page 16: Lattice Boltzmann Method for Fluid Simulationsbillbao/presentation930.pdf · 2013-03-04 · 6.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University

References

1. S. Chen, D. Martınez, and R. Mei, On boundary conditions in latticeBoltzmann methods, J. Phys. Fluids 8, 2527-2536 (1996)

2. Q. Zou, and X. He, pressure and velocity boundary conditions for thelattice Boltzmann, J. Phys. Fluids 9, 1591-1598 (1997)

3. R. Begum, and M.A. Basit, Lattice Boltzmann Method and itsApplications to Fluid Flow Problems, Euro. J. Sci. Research 22, 216-231(2008)

4. Z. Guo, B. Shi, and N. Wang, Lattice BGK Model for IncompressibleNavier-Stokes Equation, J. Comput. Phys. 165, 288-306 (2000)

5. Z. Guo, B. Shi, and C. Zheng, A coupled lattice BGK model for theBoussinesq equations, Int. J. Numer. Meth. Fluids 39, 325-342 (2002)

6. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics andBeyond. Oxford University Press, Oxford. (2001)

7. M. Sukop and D.T. Thorne, Lattice Botlzmann Modeling: an introductionfor geoscientists and engineers. Springer Verlag, 1st edition. (2006)

16 / 16