Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4...

7

Click here to load reader

Transcript of Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4...

Page 1: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 2

• Introduction

Y : Rd 7→ R given by design points (xi, yi = Y (xi))mi=1

Surrogate model: s(x) = αTφ(θ, x) + βTf(x)

Regression (polynomial) part: f(x) = (f1(x), . . . , fq(x))T , fj : Rd 7→ R

Correlation (radial) part: φ(θ, x) = (φ1(θ, x), . . . , φm(θ, x))T

where φi(θ, x) = φ(‖Θ(x− xi)‖2), φ : R+ 7→ R . scaling Θ = diag(θ1, . . . , θd)

Examples

Name φ(r), r ≥ 0

Gaussian e−r2

inverse multiquadric (r2 + 1)−1/2

multiquadric (r2 + 1)1/2

thin plate spline r2 log r−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2Gaussianthin plate spline

SIAM OP05 Kriging and RBFs 1

Kriging and Radial Basis Functions

Hans Bruun Nielsen & Kristine Frisenfeldt Thuesen

DTU, IMM, Scientific Computing Section

Introduction, definitions

Kriging

General RBFs

Unified approach

Examples

Plans for future work

Page 2: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 4

• Kriging

Y (x) = βTf (x) + ζ(x) , y = Fβ + z , zi = ζ(xi)

ζ(x) stochastic, E[ζ(x)

]= 0, E

[ζ(x)2

]= σ2, E

[zi ζ(x)

]= σ2φi(θ, x), E

[z zT

]= σ2 Φ

Assumptions φ(0) = 1 and Φ is positive definite.

The approximation s(x) is a linear combination of the yi, s(x) = γ(x)Ty

MSE: Ω2(x) = E[(s(x)− Y (x))2

]= σ2[1− 2γ(x)Tφ(θ, x) + γ(x)TΦ γ(x)]

Minimize Ω2 under the constraint FTγ(x)− f (x) = 0

Estimated variance σ2 =1

m

(y − Fβ

)TΦ−1

(y − Fβ

)Assume Gaussian process: θ∗ = argminθ

det Φ(θ) · σ2m(θ)

SIAM OP05 Kriging and RBFs 3

Interpolation

Φα + Fβ = y , Φij = φj(θ, xi), Fi,: = f (xi)T

m equations with m+q unknowns.

Both in Kriging and general RBF approach: supply with FTα = 0(Φ F

F> 0

)(α

β

)=

(y

0

)(∗)

Φ ∈ Rm×m is symmetric. Full rank if the xi are distinct.

F ∈ Rm×q, q < m , is assumed to have rank q.

(∗) has a unique solution.

Page 3: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 6

s(x) = αTφ(θ, x) + βTf(x) . Φα + F β = y

Seek α ∈ Vµ ⊆ N (FT ) : α = N αN

NTΦN αN + NTF β = NTy , (−1)µ ΦαN = yN

The matrix Φ = (−1)µ NTΦN is symmetric and positive definite.

The regression coefficients are found from

Rβ = QT(y − ΦNαN

)

SIAM OP05 Kriging and RBFs 5

• General RBFs

Φ is not necessarily definite, but Powell1 shows that

a number of popular RBFs satisfy

sign(vTΦ v

)= (−1)µ

for all v ∈ Vµ, v 6= 0

Vµ = v ∈ Rm :∑m

i=1 vip(xi) = 0

for any p ∈ Πµ−1

We assume that fj comprises a basis of Πµ−1.

Then Vµ ⊆ N (FT ), the nullspace of FT . An ortho-

normal basis ofN can be found asN in the complete

QR factorization of F ,

F =(Q N

)(R0

)= QR

Name φ(r), r ≥ 0 µ

Gaussian e−r2

0

inverse multiquadric (r2 + 1)−1/2 0

linear r 1

multiquadric (r2 + 1)1/2 1

thin plate spline r2 log r 2

cubic r3 2

1

M.J.D. Powell: 5 lectures on radial basis functions. Report IMM-REP-2005-03, IMM, DTU, 2005.

Page 4: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 8

Theorem: For φ(r) ∈ r, r3, r2 log r, ω ∈ R+ :

s(ωθ, x) = s(θ, x), Γ(ωθ) = Γ(θ)

Remarks:

“Scalar” θ has no effect.

“Full” θ : Finding θ∗ reduces to a problem in Rd−1+ instead of Rd+

SIAM OP05 Kriging and RBFs 7

• Unified approach

a ∈ Rm. a = QaR + NaN, aR = QTa, aN = NTa

Assume that y = Fβ + z, z = NzN

E[z zT

]= σ2NANT, A = D ΦD, D = diag(Φ

−1/2ii )

A is symmetric, positive definite, and Aii = 1. Valid correlation matrix. A = DCTC D

BLUE: minv,gb‖v‖2

2 s.t. Fβ + NDCTv = y Solution: CTv = (−1)µD−1NTy

v ∈ Rm−q has variance σ2I . Estimate: σ2 = ‖v‖22

/(m− q)

Assume Gaussian process: θ∗ = argminθ

Γ(θ) ≡ detA(θ) · σ2(m−q)(θ)

Page 5: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 10

0 10 20 30 40 50 60 70 80 90 100

10−4

10−2

100

No scaling: θ = (1, 1)

Thin plate splineMultiquadricGaussian

2-D

0 10 20 30 40 50 60 70 80 90 100

10−4

10−2

100

With scaling

0 10 20 30 40 50 60 70 80 90 10010

−2

10−1

100

No scaling: θ = (1, 1, 1)

Thin plate splineMultiquadricGaussian

3-D

0 10 20 30 40 50 60 70 80 90 10010

−2

10−1

100

With scaling

10 20 30 40 50 60 70 80 90 10010

−2

10−1

100

No scaling: θ = (1, 1, 1, 1)

Thin plate splineMultiquadricGaussian

4-D

10 20 30 40 50 60 70 80 90 10010

−2

10−1

100

With scaling

SIAM OP05 Kriging and RBFs 9

• Examples

Y (x) =

d∏k=1

ekxk cos(2k xk)

Educated guess: θ∗ = (1, 2, . . . , d)T

Test regions T of sizes 22, 23, 0.54

Successively insert new design

point at

argmaxx∈T |s(x)− Y (x)|

0.5

1

1.5

2

−1.5−1

−0.50

−6

−4

−2

0

2

Page 6: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 12

MSE: under progress.

Assume φ(0) ∈ 0, 1.

Ω2(x) = (−1)µ σ2φ(0) + γ(x)T

[Φγ(x)− 2φ(θ, x)

](?)

Ω(x)

0.5 1 1.5 2−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

|s(x) − Y(x)|

0.5 1 1.5 2−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

SIAM OP05 Kriging and RBFs 11

Data: First 25 points from Gaussian example.

Use thin plate spline. θ∗ = (1, θ∗2)T

10−1

100

101

10−5

100

105

1010

ΓMSE

θ∗ = (1, 2)T (as expected)

Page 7: Kriging and Radial Basis Functions OP05 Kriging and RBFs 10 0 10 20 30 40 50 60 70 80 90 100 10−4 10−2 100 No scaling: θ = (1, 1) Thin plate spline Multiquadric Gaussian 2-D

SIAM OP05 Kriging and RBFs 13

• Plans for future work

• Verifying (improving ?) the expression for Ω2(x)

• Large scale: can explicit computation of N be avoided ?

• Update the Matlab DACE package2 to allow for general RBFs

2

See http://www2.imm.dtu.dk/∼hbn/dace/