Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase...

54
Issues in Zonal Flows and Drift Wave Turbulence P.H. Diamond CMTFO and CASS, UCSD; USA WCI Center for Fusion Theory, NFRI; Korea ISSI Workshop, 4-9 March, 2012 1

Transcript of Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase...

Page 1: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Issues in Zonal Flows and Drift Wave Turbulence

P.H. Diamond

CMTFO and CASS, UCSD; USA

WCI Center for Fusion Theory, NFRI; Korea

ISSI Workshop, 4-9 March, 2012

1

Page 2: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

2

Page 3: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

3

Page 4: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

m = n = 0

kr

Zonal Flows:

Tokamaks planets

Preamble I

finitepotential fluctuations

4

Page 5: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

V =c

Bz ×∇φ+Vpol

L > λD ∇ · J = 0 ∇⊥ · J⊥ = −∇�J�

→ ms

J⊥ = n|e|V (i)pol

J� : ηJ� = −(1/c)∂tA� −∇�φ+∇�pe

dne/dt = 0

dne

dt+

∇�J�−n0|e|

= 0

∂tA� v.s. ∇�φ

∇�pe v.s. ∇�φ

→ Re:Plasma?

→ 2 Simple Modelsa.) Hasegawa-Wakatani (collisional drift inst.)

b.) Hasegawa-Mima (DW)

a.)

→→

b.)

e.s.

n.b.

MHD:

DW:

Preamble II

5

Page 6: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

ρ2sd

dt∇2φ = −D�∇2

�(φ− n/n0) + ν∇2∇2φ

d

dtn−D0∇2n = −D�∇2

�(φ− n/n0)

D�k2�/ω

D�k2�/ω � 1 → n/n0 ∼ eφ/Te

d

dt(φ− ρ2s∇2φ) + v∗∂yφ = 0

PV = φ− ρ2s∇2φ+ lnn0(x)

d

dt(PV) = 0

(m,n �= 0)

PV = n− ρ2s∇2φ

ρ2sd

dt∇2φ = −µ∇2φ+ ν∇2∇2φ

So H-W

is key parameter

b.)

→ H-M

n.b.

n.b.total density

n.b. Zonal Flows:6

Page 7: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

An infinity of models follow:

- MHD: ideal ballooning resistive → RBM

- HW + : drift - Alfven

- HW + curv. : drift - RBM

A�

- HM + curv. + Ti: Fluid ITG

- gyro-fluids

- GK N.B.: Most Key advances appeared in consideration

of simplest possible models

7

Page 8: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

8

Page 9: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Heuristics of Zonal Flows a):

Simplest Possible Example: Zonally Averaged Mid-Latitude Circulation

9

Page 10: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Some similarity to spinodal decomposition phenomena → both `negative diffusion’ phenomena

10

Page 11: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

v∗ < 0

11

Page 12: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

12

Page 13: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

13

Page 14: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

, without clear

`scale separation’

14

Page 15: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

linear and non-linear wave-fluid element interaction (akin NLLD)

15

Page 16: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

16

Page 17: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

17

Page 18: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

18

Page 19: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

“Non-Acceleration Theorem”

19

Page 20: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

20

Page 21: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Mechanisms

21

Page 22: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

22

Page 23: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

23

Page 24: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

24

Page 25: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

25

Page 26: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

26

Page 27: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

27

Page 28: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

28

Page 29: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

29

Page 30: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

30

Page 31: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

31

Page 32: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

32

Page 33: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

33

Page 34: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

34

Page 35: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

35

Page 36: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

36

Page 37: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

37

Page 38: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

38

Page 39: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

39

Page 40: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

What is the H-mode? What is a transport barrier?

40

Page 41: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Experimental motivation

!  L-H threshold Power in low density region (typically lower than 3x1019m-3) !  I-phase as a transient phase between low and high confinement, i.e. L!I!H transition.

!  Limit cycle oscillation in prior to the transition in TJ-II[Estrada ‘10 EPL], NSTX[Zweben ‘10 PoP], ASDEX Upgrade[Conway ‘11 PRL], EAST[Xu ‘11 PRL]

!  Radial structure of mean flow shear in the I-phase limit-cycle oscillation !  Dual shear layer in DIII-D [Schmitz, TTF ‘11]

!  Poloidal rotation involving in the transition process in JT-60U [Kamiya ‘10 PRL]

[Schmitz, TTF ‘11]

fluctuations in the radial electric field Er ’ !u?B appeardirectly in the Doppler shift, while the Doppler peakintensity SD is proportional to the turbulence level at theprobed k? [11]. The measurements reported here wereobtained with an X-mode 50–75 GHz tunable frequencyreflectometer with 20 MHz signal sampling, located belowthe tokamak outer midplane [14].

GAMs are most clearly observed at low plasma densitiesand high safety factors q [15] due to weaker collisional andLandau damping [1]. Figure 1(a) shows a GAM existencediagram in terms of net heating power Pnet versus centralline averaged plasma density !ne for Ohmic and L-modeheated plasmas. GAMs are not observed in the H mode.Overlaid are the predicted (dashed line) and experimen-tally measured (curve) L-H power threshold showing twobranches; see [16] for details. The GAM appears as acoherent peak in the fD ( ~Er) spectrum, cf. Fig. 5(a) in Lmode. Note the absence of coherent low frequency ZFactivity, either as a peak or broadening of the spectraaround zero frequency. The spectra continues to be flatdown to the lowest spectral resolution investigated (a fewtens of Hz).

From the low density L mode (edge !"edge # 1) raising

either the heating power or the density causes the turbu-lence to rise across the whole edge region and to beginpulsating at around 2–4 kHz (sometimes with a slowersubpulse activity of a few hundred Hz) with an on-offduty cycle of less than 50%. This intermediate state(labeled I phase) is not transitory but can be maintainedfor the entire discharge. Observations from many dis-charges confirm that the L to I phase is a sharp transitionwith a well-defined threshold, while the full H modeappears to evolve more softly from the I phase. Theturbulence pulsing extends across the plasma edge intothe open flux surface scrape-off layer (SOL). Figure 2shows an example close to the power or density thresholdwhere the discharge dithers between the L and I phases—illustrated by the divertor tile shunt current (/ SOL flow).

The transition from continuous L-mode turbulence to puls-ing is shown below in the Doppler reflectometer spectro-gram S$f; t% from just inside the Er minimum location at anormalized poloidal flux radius "pol # 0:988. Below arethe corresponding (smoothed) traces of the u? velocity andfluctuation level SD at the probed k? # 9:8 cm!1.The u? and SD pulsing are synchronized and display all

the features of a limit-cycle behavior with a fast switchingbetween an enhanced and a reduced fluctuation state in lessthan 1 #s, i.e., on the turbulence time scale. The GAM isalso still present, however, only during the enhanced tur-bulence state. This is more clearly seen in Fig. 3 whichshows an expanded time trace of (a) the instantaneous Er

(100 ns resolution) plus (b) smoothed Er and turbulencelevel SD traces over four pulses. The figure shows a se-quence of events: (1) The turbulence rises between thepulses, (2) reaches a critical threshold (marked by thedashed lines) and triggers an exceedingly large GAMoscillation (3) together with a turbulence driven meanflow—indicated by the offset in the oscillation. [Thepeak-to-peak GAM flow oscillation amplitude during thepulse can exceed 100% of the mean flow—stronger than inthe preceding L mode. While earlier observations alsopoint towards a rTe (drive) threshold for the GAM onset[15], it is possible that the GAM is also enhanced by the

shot

FIG. 1 (color online). (a) GAM existence plot in terms of Pnet

vs central line average density. (b) Edge radial electric field Er

profiles for L (PECH & 0:35 MW) and I phase (1.1 MW)shot 24 811, BT & !2:3 T, Ip & 0:8 MA, q95 # 4:5, !ne & 3'1019 m!3, Teo # 2:4 keV, and favorable lower X point.

shot

FIG. 2 (color online). (a) Time trace of divertor shunt current,(b) expanded reflectometer spectrogram S$f; t%—darker colorsfor higher intensity, with (c) corresponding u? velocity andfluctuation level SD, and (d) estimated mean and oscillatoryshearing rates and turbulence decorrelation rate $!1

c across theL to I phase. BT & !2:3 T, Ip & 1:0 MA, q95 # 4, !ne & 2:8'1019 m!3, Teo # 3 keV, PECH & 1:0 MW.

PRL 106, 065001 (2011) P HY S I CA L R EV I EW LE T T E R Sweek ending

11 FEBRUARY 2011

065001-2

[Conway ‘11 PRL]

41

Page 42: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

42

Page 43: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

43

Page 44: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

44

Page 45: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

→ EAST Results (G.S. Xu, et.al., ’11)

→ hardened, reciprocating probes

→ quasi-periodic Er oscillation (f < 4 kHz), with associated turbulence modulation

→ and exhibits correlated spikes prior to transition

→ support key role of zonal flow in L→H transition

Er �vrvθ�E

spike in and Er �vrvθ�E

Power spectra peaks at f < 4kHz

45

Page 46: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

46

Page 47: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

47

Page 48: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

7

a) turbulence

b) ZF

c) log(MF)

L-mode Intermediate phase Limit Cycle Oscillations H-mode

r/a

Slow Power Ramp Indicates L!I!H Evolution.

time

48

Page 49: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Cycle is propagating nonlinear wave in edge layer

Period of cycle increases approaching transition.

•  Turbulence intensity peaks just prior to transition.

•  Mean shear (i.e. profiles) also oscillates in I-phase.

ZF

Turbulence intensity

Mean flow shear

49

Page 50: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

Mean shear location comparisons indicate inward propagation.

50

Page 51: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

51

Page 52: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

If you build it, they will came...

Basic experiment:

- large, rotating, ~ QG (tilted caps) liquid metal or

equivalent with Rm ∼ 100

- extend domain of PPPL experiment of H. Ji, et.al.

- aims:

- MHD dynamics of zonal flows, jets

- zonal fields, QG dynamo (L-Smith, Tobias)

- aspects of MHD momentum transport(i.e. solar tachocline physics)

52

Page 53: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

‘Confinement’ experiments:

- high power, low ITB

- multi-channel DBS imaging study of region, on meso-scale

-multi-channel CHS to eliminate mean flows (including poloidal)

- high space-time resolution profile evolution, i.e. corrugations?

(EAST?)

τext

qmin

53

Page 54: Issues in Zonal Flows and Drift Wave Turbulence · r profiles for L (P ECH ¼ 0:35 MW) and I phase (1.1 MW) shot 24811, B T ¼!2:3T, I p ¼ 0:8 MA, q 95 # 4:5, n! e ¼ 3 ’ 1019

54